# NMR Spectroscopy of Organic Compounds

### Lesson 10: EPR



Ján Tarábek

# Basic Principles & Applications of Electron Paramagnetic (Spin) Resonance, EPR (ESR). NMR Analogy

### **9** Ján Tarábek

INSTITUTE OF ORGANIC CHEMISTRY AND BIOCHEMISTRY (IOCB) OF THE CAS



Presentation link: 🔗 https://nmr.group.uochb.cz/en/nmr-organic-compounds

jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

## E Table of Contents

### Basic Concepts and EPR Discovery

- Mechanical & Magnetic Resonance
- Spin A Short Review
- Small Excursion into the EPR History
- 2 Applications
- 8 Recording and Analysis of the EPR Spectra
  - EPR Experiment
  - EPR Spectra and their Parameters
  - Complex Spectral Analysis
- 4 Closing Part NMR vs EPR Comparison
- 5 Appendices Additional EPR Related Topics



# P Mechanical Resonances in Physics

### 🔥 Resonance

Physical phenomenon  $\Rightarrow$  Vibration/Oscillation amplitude of a pendulum/oscillator is getting higher in comparison to its natural ground state. It occurs if the frequency  $\nu_{applied}$  of the periodically applied force equals to the natural one  $\nu_{own}$ . The applied stimulus may not be necessarily strong.





<sup>1</sup>Diverse web resources, mainly  $\boldsymbol{\mathscr{O}}$  https://www.vsb.cz/en

# Resonance of Magnetic Needle in Magnetic Field



Energy  $(\varepsilon(\theta))$  of tiny magnet  $(\vec{\mu})$  in magnetic field<sup>2</sup>  $(\vec{B}_0)$ :

$$\varepsilon(\theta) = -\vec{\mu}\vec{B}_0 = -\mu B_0 \cos(\theta) = -\mu_z B_0 \tag{1}$$
$$\varepsilon(0^\circ) = -\mu B_0 \quad \varepsilon(180^\circ) = \mu B_0$$
$$\Delta \varepsilon = \varepsilon(180^\circ) - \varepsilon(0^\circ) = 2\mu B_0 = 2\mu_z B_0$$

<sup>2</sup>  $A \equiv \text{Magnetic Flux Density } [B] = G (\mathbf{mT})$ 

jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

Basic Concepts and EPR Discovery

Mechanical & Magnetic Resonance

### 😤 Electrons & Nuclei like Tiny Magnets?

### Schematic View of Deuterium & Protium



Proton (p) & Electron (e) Precession in Magnetic Field  $\vec{B}_0$ 

$$\nu_{\mathsf{p}} = -\frac{1}{2\pi} \gamma_{\mathsf{p}}^* B_0(\mathsf{p}) \tag{II}$$
$$\nu_{\mathsf{e}} = -\frac{1}{2\pi} \gamma_{\mathsf{e}}^* B_0(\mathsf{e}) \tag{III}$$



# Precession

### Ensemble of Magnetic Moments in Magnetic Field $\vec{B}_0$ :



#### Gyroscope in Gravitational Field ():





# Bectrons & Nuclei like Tiny Magnets?

### Examples of Magnetic (non-magnetic) Nuclei & Electron:

| Nucleus         | $\gamma^*/10^6~{\rm rad}{\rm s}^{-1}~{\rm T}^{-1}$ | Nat. Abund. / $\%$ | $\nu_{\rm N(e)}/\rm MHz$ at $11.74\rm T$ |
|-----------------|----------------------------------------------------|--------------------|------------------------------------------|
| <sup>1</sup> H  | 267.522                                            | 99.985             | -500.000                                 |
| <sup>12</sup> C | NA**                                               | 98.930             | NA                                       |
| <sup>13</sup> C | 67.283                                             | 1.070              | -125.725                                 |
| <sup>14</sup> N | 19.338                                             | 99.636             | -36.132                                  |
| <sup>15</sup> N | -27.126                                            | 0.364              | 50.684                                   |
| <sup>16</sup> O | NA                                                 | 99.962             | NA                                       |
| <sup>17</sup> O | -36.281                                            | 0.038              | 67.782                                   |
| <sup>31</sup> P | 108.394                                            | 100.000            | -202.606                                 |
| e <sup>-</sup>  | -176085.971                                        | NA                 | 329016.005                               |
|                 |                                                    | $\Downarrow$       |                                          |
|                 |                                                    |                    |                                          |
| netogyric       | ratio 🕸                                            |                    | ~~~                                      |

\*\* Not Available

IMR SPECTROSCOPY

# Bectrons & Nuclei like Tiny Magnets?

### Examples of Magnetic (non-magnetic) Nuclei & Electron:

|                                                                                         | Nucleus                   | $\gamma^*/10^6~{\rm rad}{\rm s}^{-1}{\rm T}^{-1}$ | Nat. Abund. / $\%$ | $\nu_{\rm N(e)}/\rm MHz$ at $11.74\rm T$ |  |
|-----------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|--------------------|------------------------------------------|--|
|                                                                                         | <sup>1</sup> H            | 267.522                                           | 99.985             | -500.000                                 |  |
|                                                                                         | <sup>12</sup> C           | NA**                                              | 98.930             | NA                                       |  |
|                                                                                         | <sup>13</sup> C           | 67.283                                            | 1.070              | -125.725                                 |  |
|                                                                                         | <sup>14</sup> N           | 19.338                                            | 99.636             | -36.132                                  |  |
|                                                                                         | <sup>15</sup> N           | -27.126                                           | 0.364              | 50.684                                   |  |
|                                                                                         | <sup>16</sup> O NA 99.962 |                                                   | NA                 |                                          |  |
|                                                                                         | <sup>17</sup> O           | -36.281                                           | 0.038              | 67.782                                   |  |
|                                                                                         | <sup>31</sup> P           | 108.394                                           | 100.000            | -202.606                                 |  |
|                                                                                         | e <sup>-</sup>            | -176085.971                                       | NA                 | 329016.005                               |  |
|                                                                                         |                           |                                                   | $\Downarrow$       |                                          |  |
|                                                                                         |                           | Free electron is $\approx 65$                     | 0-time stronger U  | than proton                              |  |
| $\equiv$ magnetogyric ratio <b><math>\hat{\mathbf{G}}</math> J</b> ot <b>A</b> vailable |                           |                                                   |                    |                                          |  |

jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

**MR** SPECTROSCOPY I IOCB PRAGUE

## Magnetic Resonance of Protons & Electrons Wiction of Electromagnetic Radiation(B1, E1)

Common Frequencies of Alternating Magn. Flux Density (B<sub>1</sub>) for Protons ( $\nu_p(B_1)$ ) & Electrons ( $\nu_e(B_1)$ ):





Basic Concepts and EPR Discovery Mechanical & Magnetic Resonance

# Precession & Mechanical Gyroscope Resonance Analogy with the Ensemble of Nuclei or Electrons

#### applied frequency = natural frequency



<sup>3</sup> https://www.drcmr.dk/MR

https://www.youtube.com/watch?v=7aRKAXD4dAg

jan.tarabek@uochb.cas.cz, 🤳 220–183–330 (IOCB)

EPR Principles & Applications

# Stern-Gerlach Experiment

• **1922** Beam of silver atoms [Kr] 4 d<sup>10</sup> 5 s<sup>1</sup>, is split by non-homogeneous magnetic field into "two" lines (*Otto Stern & Walther Gerlach*)



 1924-1925 Explanation of "S-G" experiment by the existence of intrinsic angular momentum (*Wolfgang Pauli & George Uhlenbeck & Samuel Goudsmit*)



jan.tarabek@uochb.cas.cz, 🤳 220–183–330 (IOCB)

<sup>&</sup>lt;sup>4</sup>A memorial plaque at the University of Frankfurt

Basic Concepts and EPR Discovery Spin

Spin - A Short Review

# **Orbital**\* & Intrinsic (Spin) Angular Momentum (AM)

### Orbital AM



### Intrinsic AM (Spin)



$$\vec{\mu}_l = \frac{q}{2m_q}\vec{l} = \gamma_q\vec{l} \tag{IV}$$

$$\begin{array}{c} q & {
m charge \ carrier} \\ \gamma_q & {
m magnetogyric \ ratio} \end{array}$$

$$\gamma_j$$
 spin magnetogyric ratio

$$\vec{\mu}_j = g_{\mathsf{e}(\mathsf{N})} \frac{q}{2m_q} \vec{j} = \gamma_j \vec{j} \tag{V}$$

| $m_q$                     | charge carrier mass            |
|---------------------------|--------------------------------|
| $g_{\rm e(N)}$            | nuclear or electronic g-factor |
| $\equiv S   {\rm or}   I$ | nuclear or electron spin       |



\* Defined as:  $\vec{l} = \vec{r} \times \vec{p}$ , measure of rotational motion dynamics

j

Basic Concepts and EPR Discovery

Spin - A Short Review

# **Orbital** & Intrinsic (Spin) Angular Momentum (AM)



### 🔥 Spin<sup>5</sup>

... is pure quantum-mechanical property,

which is not related to spinning/rotating particle, such an idea is only used as a limited model for educational purposes

- Neutrons are not charge carriers even though they do have a spin!
- If the particles were spinning ⇒
   ⇒ the spinning speed >> c!
- We don't know the exact particle shape nor the rotational axes!

<sup>5</sup> https://mriquestions.com/what-is-spin.html

- https://www.youtube.com/watch?v=v1\_-LsQLwkA
- https://www.youtube.com/watch?v=pWlk1gLkF2Y
  - D.P. Goldenberg, Principles of NMR Spectroscopy. An Illustrated Guide.

jan.tarabek@uochb.cas.cz, 🧈 220-183-330 (IOCB)

EPR Principles & Applications

Final Energies ( $\varepsilon$ ) in NMR and EPR Ground (gr)-Excited (ex) State Populations at T = 298 K

Proton (NMR)

$$\frac{N_{\rm ex}}{N_{\rm gr}} = \exp\left(-\frac{\Delta\varepsilon}{k_{\rm B}T}\right) \approx 1 - \frac{\Delta\varepsilon}{k_{\rm B}T} \tag{VI}$$

Electron (EPR)



# **F** Energies $(\varepsilon)$ in NMR and EPR

**小** Conditions for Recording of Spectra



$$\mu_{N} = \hbar \gamma_{p} \text{ (Nuclear magneton)}$$
  
= 5.05078324(13).10<sup>-27</sup> J T<sup>-1</sup>

$$\begin{array}{l} \mu_{\rm B}=-\hbar\gamma_{\rm e}~({\rm Bohr~magneton}) \\ = 9.27400915(23)\cdot 10^{-24}~{\rm J}~{\rm T}^{\rm HH1} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \text{NMR SPECTROSCOPY} \\ \end{array}$$

jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

# **NMR & EPR Spectroscopy**

frequency =  $\nu(B_0)$ 



\*\* CW  $\equiv$  continuous wave



## 🎦 NMR & EPR like "Stepsisters" 😅



# 🛨 EPR Discovery by Evgeny Zavoisky

- **1940-41** He started to follow up the NMR solid-state experiments  $\Rightarrow$  Results were not reproducible (problems with field homogeneity)
- 1944 1st EPR experiments on  $CuCl_2 \cdot 2H_2O$ ,  $CuSO_4 \cdot 5H_2O$ ,  $MnSO_4 \cdot H_2O$
- Additional EPR development by Brebis Bleaney



<sup>6</sup>𝚱 https://kpfu.ru/eng/about-the-university/kfu-structure/museums/ evgeny-zavoisky-lab-museum

jan.tarabek@uochb.cas.cz, 🧈 220-183-330 (IOCB)

Basic Concepts and EPR Discovery Small Excursion into the EPR History

# Splitting of EPR Spectra & Pulsed Technique

• **1953** Splitting of EPR spectra detected for the first time: Wuster's Blue, Naphthalene<sup>•-</sup> (*Weissman, Townsend, Paul, Pake*)



• 1958 1st EPR pulsed experiment (*Richard Blume*)



• 1987 FT EPR Spectrometer commercially available (Bruker)





EPR Principles & Applications



# EPR Spectroscopy

### 🔥 EPR<sup>9</sup>

 $\label{eq:electron} \begin{array}{l} \mbox{Electron Paramagnetic Resonance} \Rightarrow \mbox{form of spectroscopy, concerned with the} \\ \mbox{microwave-induced transitions of unpaired electrons} & \mbox{having a net spin} \end{array}$ 

& orbital angular momentum .

Most of the stable molecules possess e^--configuration with "paired" spins  $\Rightarrow$ 

- $\Rightarrow$  EPR is not so widely used like NMR, however
- $\Rightarrow$  EPR is the only one direct method to study paramagnetic species

### **A** What is the EPR Mission?

• Determination of unpaired e<sup>-</sup>-centers (incl. quantitative information like c, n, N)

- Find the chemical structure of unpaired e<sup>-</sup>-center within sample/material
- Find the information about dynamics of unpaired e<sup>-</sup>-center



<sup>9</sup> https://goldbook.iupac.org/terms/view/E02005

jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

# **Examples of Paramagnetic Compounds/Materials**

### Paramagnetic $\cong O_2$





- Radicals-organic, inorganic, neutral (e.g. HO<sup>•</sup>, nitroxyl), ions
- Structures with more than one unpaired e<sup>-</sup> (e.g. O<sub>2</sub>, bi(di)radicals)
- Transition-metal complexes (e.g. Cu<sup>2+</sup>, Co<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup>)
- Defects in (ordered) solid-state structures (e.g. in diamonds, glasses)
- Conducting Electrons (e.g. in graphite)





# **Examples of Paramagnetic Compounds/Materials**

# Paramagnetic $\Xi O_2$





- Radicals-organic, inorganic, neutral (e.g. HO<sup>•</sup>, nitroxyl), ions
- Structures with more than one unpaired e<sup>-</sup> (e.g. O<sub>2</sub>, bi(di)radicals)
- Transition-metal complexes (e.g. Cu<sup>2+</sup>, Co<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup>)
- Defects in (ordered) solid-state structures (e.g. in diamonds, glasses)
- Conducting Electrons (e.g. in graphite)





# **L** Examples of Paramagnetic Compounds/Materials

# Paramagnetic $\Xi O_2$





- Radicals-organic, inorganic, neutral (e.g. HO<sup>•</sup>, nitroxyl), ions
- Structures with more than one unpaired e<sup>-</sup> (e.g. O<sub>2</sub>, bi(di)radicals)
- Transition-metal complexes (e.g. Cu<sup>2+</sup>, Co<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup>)
- Defects in (ordered) solid-state structures (e.g. in diamonds, glasses)
- Conducting Electrons (e.g. in graphite)





# L Examples of Paramagnetic Compounds/Materials

### Paramagnetic $\cong O_2$





- Radicals-organic, inorganic, neutral (e.g. HO<sup>•</sup>, nitroxyl), ions
- Structures with more than one unpaired e<sup>-</sup> (e.g. O<sub>2</sub>, bi(di)radicals)
- Transition-metal complexes (e.g. Cu<sup>2+</sup> Co<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup>)
- Defects in (ordered) solid-state structures (e.g. in diamonds, glasses)
- Conducting Electrons (e.g. in graphite)





# Examples of Paramagnetic Compounds/Materials

### Paramagnetic $\cong O_2$





- Radicals-organic, inorganic, neutral (e.g. HO<sup>•</sup>, nitroxyl), ions
- Structures with more than one unpaired e<sup>-</sup> (e.g. O<sub>2</sub>, bi(di)radicals)
- Transition-metal complexes (e.g. Cu<sup>2+</sup>, Co<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>3+</sup>)
- Defects in (ordered) solid-state structures (e.g. in diamonds, glasses)
- Conducting Electrons (e.g. in graphite)





# 🞐 🏛 🗿 EPR in Natural Sciences



Recording and Analysis of the EPR Spectra EPR Experiment

# CW EPR & FT NMR Spectrometers

#### 🕑 General View & Comparison



See 🔗 EPR & NMR (400 MHz) Spectroscopy instruments at IOCB



#### EPR Experiment

# 🗲 🗱 CW EPR Spectrometer

Oetailed View & Recorded Spectrum

#### Magnet & Microwave bridge



### Recording of an EPR Spectrum





## Essential EPR Parameters

➡ Common Recording Conditions for EPR Spectra



<sup>#</sup> gaseous, as well <sup>\$</sup>  $0^{\circ}$  extension 3.8 K - 1273 K\* 1 G(Gauss) = 0.1 mT



# Let Splitting of the EPR Spectrum

W Hyperfine Coupling/Interaction with Nucleus  $I_{\sf N}=1/2$  (<sup>1</sup>H)



$$g\mu_{\rm B}(B_{i+1} - B_i) = g\mu_{\rm B}a_{\rm N}^* \text{ (Splitting const.)} = A_{\rm N}^{**} \text{ (Coupling const.)}$$
(XI)  
(mT)  
issually converted into  $A/h \Rightarrow \text{ MHz (cm}^{-1})$ 

\* G \*\* I Recording and Analysis of the EPR Spectra EPR Spectra and their Parameters

# Let M Splitting of the EPR Spectrum Schematic View of e-N in EPR & N-N in NMR ⇒ Analogy.





# $\square$ Hyperfine Splitting by N Nuclei

Multiplicity & Intensity



# **U** Splitting in EPR/NMR

3 Three Equivalent Nuclei with I = 1/2 (-CH<sub>3</sub>/ -CH<sub>3</sub>)



# $\blacksquare Hyperfine Splitting by N Nuclei*$

Exercising Examples with <sup>14</sup>N & <sup>1</sup>H Splitting



\* Splitting from t-butyl & -CH<sub>3</sub> can be neglected



# $\blacksquare Hyperfine Splitting by N Nuclei*$

Exercising Examples with <sup>14</sup>N & <sup>1</sup>H Splitting



\* Splitting from t-butyl & -CH<sub>3</sub> can be neglected



# $\blacksquare Hyperfine Splitting by N Nuclei*$

Exercising Examples with <sup>14</sup>N & <sup>1</sup>H Splitting



\* Splitting from *t*-butyl & -CH<sub>3</sub> can be neglected



Recording and Analysis of the EPR Spectra EPR Spectra and their Parameters

## □□ Origin of Hyperfine Splitting/Coupling Const. (a/A)→ Fermi-Contact $(FC)^{\#}$ + Dipolar Interaction\*\* & Spin Density



Spin Density /  $Å^{-3}$ :

$$A_{\rm iso}(a_{\rm iso}) \propto \rho_S^{\alpha-\beta}(0)$$
 (XIV)

Generally (also for solid-state):

 $\mathbf{A}_{\text{total}} = \mathbf{A}_{\text{iso}} \mathbf{1} + \mathbf{T}_{\text{dip}}^{**}$ 

Spin Population (Integrated  $\rho_S(0)$ ):

$$\begin{array}{l} \rho_{S}^{\alpha-\beta}(0) = \rho^{|\alpha\rangle,\uparrow}(0) - \rho^{|\beta\rangle,\downarrow}(0) \\ \rho^{|\alpha\rangle,\uparrow} = N_{|\alpha\rangle}/V \\ \rho^{|\beta\rangle,\downarrow} = N_{|\beta\rangle}/V \end{array} \tag{XIII} \\ \begin{array}{l} \chi^{\Psi}(\mathsf{pop}) = \rho_{\mathsf{X}}^{\Psi|\alpha\rangle} - \rho_{\mathsf{X}}^{\Psi|\beta\rangle} \\ \chi \equiv \mathsf{Nucleus} \\ \Psi \equiv \mathsf{Orbital} \end{array} \end{aligned}$$

<sup>#</sup> Fermi, E., Z. Phys. **1930**, 60, 320-333  $\varepsilon_{iso}^{FC} = -(2/3)\mu_o \vec{\mu}_S \vec{\mu}_I |\Psi(0)|^2 = (1/\hbar^2) A_{iso} S_z I_k$  NMR SPECTROSCOPY \*\* Hyperfine Interaction Matrix ( $\mathbf{T}_{dip}$  is orientational matrix of the  $e \leftrightarrow N$  interaction)

# EPR Spectrum Position

😁 Introduction & g-Value

Electrons are not isolated on the molecule & they always possess spin (S) & orbital (L) component of their angular momentum

$$arepsilon_{LS} = -\left(ec{\mu}_L + ec{\mu}_S
ight)ec{B}_0 + \lambdaec{L}ec{S}$$

(XVI)



 $\lambda \Rightarrow$  spin-orbit coupling constant  $g \neq g_{e} = 2.0023193043662(15)$ 

#### **Basic Energy Relation:**

$$\Delta \varepsilon = h\nu = g\mu_{\rm B}B \tag{XVII}$$

 $\Delta g=g-g_{\rm e} \mbox{ is very small for free} \mbox{ (organic) radicals, but can be significant} \mbox{ for paramag. transition metal ions}$ 

 $g=\frac{h\nu}{\mu_{\rm B}{\bf B}}$ 

If the B changes, then  $\nu$  changes accordingly due to the resonance condition (XVII).



# EPR Spectrum Position g-Value Examples



\*  $g_{\rm ISO} = (1/3) \sum_{i=1}^{3} g_i$ , where  $g_i \equiv$  diag. principal axis components of the g-matrix  $g_i \equiv 0$  marries of the g-matrix  $g_i \equiv 0$  matrix  $g_i \equiv 0$  m

Recording and Analysis of the EPR Spectra Comp

Complex Spectral Analysis

# Complex Analysis of EPR Spectra

📃 🧮 号 Quantum Chemical Computations & Simulations of EPR Spectra





<sup>10</sup> F. Neese; Curr. Opin. Chem. Biol. 2003, 7, 125-135

jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

EPR Principles & Applications

Recording and Analysis of the EPR Spectra Complex Sp

#### Complex Spectral Analysis

# Complex Analysis of EPR Spectra

↓ Luteolin Radical Anion<sup>11</sup>



\* by quantum-chemical computations

<sup>11</sup> Š. Ramešová et al.; *Elchim. Acta* **2013**, 110, 646-654

jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

EPR Principles & Applications



Recording and Analysis of the EPR Spectra Com

#### Complex Spectral Analysis

# Complex Analysis of EPR Spectra

🕂 😑 Radical Ions of Naphthoquinone Derivative<sup>12</sup>



<sup>12</sup> J. Tarábek et al.; J. Org. Chem. **2018**, 83, 5474-5479

# 🔏 🖾 Analogy Between EPR & NMR

The very basic principle of EPR & NMR is identical

|                 | EPR                                      | $\Leftrightarrow$ | NM               | R                                        |  |  |
|-----------------|------------------------------------------|-------------------|------------------|------------------------------------------|--|--|
| Main Objective: | unpaired electron(s)                     | $\Leftrightarrow$ | nucleus (nuclei) |                                          |  |  |
| Experiment:     | microwave frequencies                    | $\Leftrightarrow$ | radio            | radio frequencies                        |  |  |
|                 | $\nu_{\rm EPR} = {\rm const.}({\rm CW})$ | $\Leftrightarrow$ | $B_{NN}$         | $_{\sf IR} = {\sf const.}({\sf pulsed})$ |  |  |
|                 |                                          |                   |                  |                                          |  |  |
|                 |                                          |                   |                  |                                          |  |  |
|                 |                                          |                   |                  |                                          |  |  |
|                 |                                          |                   |                  |                                          |  |  |
|                 |                                          |                   |                  |                                          |  |  |



# 🔏 🖾 Analogy Between EPR & NMR

The very basic principle of EPR & NMR is identical

|                 | EPR                                      | $\Leftrightarrow$ | NMR                        |  |
|-----------------|------------------------------------------|-------------------|----------------------------|--|
| Main Objective: | unpaired electron(s)                     | $\Leftrightarrow$ | nucleus (nuclei)           |  |
| Experiment:     | microwave frequencies                    | $\Leftrightarrow$ | radio frequencies          |  |
|                 | $\nu_{\rm EPR} = {\rm const.}({\rm CW})$ | $\Leftrightarrow$ | $B_{NMR} = const.(pulsed)$ |  |
|                 |                                          |                   |                            |  |

#### EPR & NMR Spectral Parameters

|                         | EPR                           | $\Leftrightarrow$ | NMR                                |
|-------------------------|-------------------------------|-------------------|------------------------------------|
| Coupling (Interaction): | $A_{\rm X}/{ m MHz}$ (e-N)    | $\Leftrightarrow$ | $J_{\rm XY}/{\rm Hz}~({\rm N-N})$  |
| Position:               | g-factor $(g)$                | $\Leftrightarrow$ | chemical shift ( $\delta$ )        |
| Intensity:              | double integral (CW)          | $\Leftrightarrow$ | integral (pulsed)                  |
| Linewidth:              | $\Delta B_{ m pp}/ m mT$ (CW) | $\Leftrightarrow$ | $\Delta  u_{1/2}/{ m Hz}$ (pulsed) |



## Table of Contents

### Basic Concepts and EPR Discovery

- Mechanical & Magnetic Resonance
- Spin A Short Review
- Small Excursion into the EPR History
- 2 Applications
- Recording and Analysis of the EPR Spectra
  - EPR Experiment
  - EPR Spectra and their Parameters
  - Complex Spectral Analysis
  - Closing Part NMR vs EPR Comparison
  - Appendices Additional EPR Related Topics



## Magnetic Resonance Techniques

- Nuclear Magnetic Resonance (NMR)
- Electron Paramagnetic Resonance (EPR)
- Magnetic Resonance Imaging (MRI, NMR & EPR)
- Nuclear Quadrupole Resonance (NQR)
- Optically Detected Magnetic Resonance (ODMR)
- Fero-/Antifero-/Feri-magnetic Resonance



# Deuterium & its Corresponding (Sub)Nuclear Particles





# Multiplicity of the Electronic Configurations

Schematic View of Ground & Excited\* States

Multiplicity: 
$$M = 2S + 1$$
  $S = \sum_{i} s_{i}$ 



# Multifrequency EPR

MW components can be used only for narrow range of  $\nu_{\text{EPR}} \Rightarrow h\nu_{\text{EPR}} = \text{const.} \& B_{\text{EPR}}$  is changing



<sup>13</sup> Sabine Van Doorslaer et al. *Coord. Chem. Rev.* **2009**, 253, 2116-2130

III IOCB PRAGU

### Quantitative CW EPR $DI \equiv$ Double Integral

$$DI_{\rm EPR} = {\rm const_{ref}} \left(Gt_C N_{\rm scan}\right) \left[ \frac{P^{1/2} B_m Q n_B S(S+1) N_{\rm spin}}{f(B_1,B_m)} \right]$$

- G gain
- $t_C/s$  conversion time
- $N_{\rm scan}$  number of scans/averages
- P/W microwave power
- $B_m/G(mT)$  modulation amplitude
  - Q probehead/cavity quality factor
  - $n_B$  Boltzmann factor (temperature dependent)
    - $S \quad \ \ {\rm the \ overall \ spin \ quantum \ number}$
  - N<sub>spin</sub> number of unpaired e<sup>-</sup>
- $f(B_1, B_m)$  spatial distribution of  $B_1$  a  $B_m$  at sample-position

Double Rectangular Probehead/Cavity



### Quantitative CW EPR Magnetic Materials

$$\label{eq:Magnetic Susceptibility} \begin{split} \text{Magnetic Susceptibility} \quad \chi = \frac{\vec{M}}{\vec{H}} \quad \text{kde} \quad \vec{B} = \mu_o(\vec{H} + \vec{M}) \quad \text{a} \quad \vec{M} = \frac{1}{V}\sum_{i=1}^N \mu_i \end{split}$$

| Diamagnetism            | $\chi_{dia}(1{\cdot}10^{-6})<0$                                    | $\chi_{\rm dia} \neq \chi_{\rm dia}(T)$        | χ.             |
|-------------------------|--------------------------------------------------------------------|------------------------------------------------|----------------|
| Paramagnetism           | $\chi_{para}(1{\cdot}10^{-6})>0$                                   | $\chi_{	extsf{para}} = \chi_{	extsf{para}}(T)$ |                |
| Cooperative Magn. Prop. | $\chi_{\rm int} (\geq 1 {\cdot} 10^4; \leq 1 {\cdot} 10^{-2}) > 0$ | $\chi_{\rm int} = \chi_{\rm int}(T)$           | x tomagnetisch |



<sup>14</sup> D. Meschede; Gerthsen Physik 2006, 23rd Edition, p. 398

 $\chi_{\rm para} = N_V \frac{\mu_o g^2 \mu_{\rm B}^2 J(J+1)}{3k_{\rm R}} \frac{1}{T}$ 

# Transient Radical Studies

Spin Trapping

5,5-Dimethyl-1- pyrroline N-oxide (DMPO) & N-tert-Butyl- $\alpha$ -phenylnitrone (PBN)



### EPR Imaging Bloodstream Recovery after Ischemia <sup>16</sup>



A: Histology

B: MRI

**C: EPR Imaging** 





<sup>15</sup> Bruker Corporation, Product Overview ELEXSYS-II E540 System <sup>16</sup> Liu, S., Timmins, G. S., et al. *NMR Biomed* 17, **2004**, 327-334

jan.tarabek@uochb.cas.cz, 🧈 220–183–330 (IOCB)

### Basic Differences Between CW & Pulsed EPR

### common for X-band

|        | Acquisition          | T/K          | $t_p(rac{\pi}{2})/{ m ns}$ | $Excit. \ range/MHz(mT)$ | P/mW    | $\nu(B_m)/{\rm kHz}$ |
|--------|----------------------|--------------|-----------------------------|--------------------------|---------|----------------------|
| Pulsed | B = konst            | <i>#</i> 203 | 10 - 16                     | $1 \ 10^{2}(2)$          | > 1 106 | _                    |
|        | $ u  eq {\sf konst}$ | 235          | 10 - 10                     | 1.10 (3)                 | ≥ 1.10  |                      |
| CW     | $B \neq konst$       | 203          | _                           | $1.67.10^{4}(500)$       | 2 - 20  | 100                  |
|        | $\nu = {\rm konst}$  | 255          |                             | 1.07.10 (300)            | 2 20    | 100                  |

Pulsed EPR cannot completely replace the CW one

CW & pulsed EPR  $\Rightarrow$  Complementary Methods





<sup>17</sup> Bruker Corporation, Product Overview ELEXSYS E580 System

EPR Principles & Applications

10/15

### Hyperfine Splitting/Coupling Constants (a/A)Polarization & Hyperconjugation: e<sup>-</sup> & <sup>1</sup>H Interactions

#### Spin Polarization:

### $A_{\rm N,iso}(a_{\rm N,iso}) < 0 \tag{XVIII}$

$$A_{\rm N,iso}(a_{\rm N,iso}) > 0 \tag{XIX}$$

2

$$\text{os.}) = Q_{\text{H}}^{\text{C-H}} \rho_{\text{C}}^{2p_z}(\text{pop}) \qquad \qquad A_{\text{H,iso}}(\beta \text{ pos.}) =$$



$$A_{\mathsf{H},\mathsf{iso}}(\beta \mathsf{ pos.}) = (K_1 + K_2 \cos^2(\theta_1))\rho_{\mathsf{C}}^{\mathsf{2}\mathsf{p}_z}(\mathsf{pop})$$





 $A_{\rm H,iso}(\alpha p$ 

### Hyperfine Splitting/Coupling Constants (a/A)Basic Principle of the "Electron Nuclear Double Resonance" (ENDOR) Spectroscopy

### ENDOR Probehead/Cavity





<sup>18</sup> 📕 D. M. Murphy & R. D. Farley; Chem. Soc. Rev. 2006, 35, 249-268

## Isotope Effects in EPR (Satellites)

 $>N-O^{\bullet*}$ 

Nat. Abundance ( $^{14}\mathrm{N})=99.60\,\%$  Nat. Abundance ( $^{13}\mathrm{C})=1.07\,\%$ 



 $({}^{95}Mo) = 15.92\%$  $({}^{97}Mo) = 9.95\%$ 



\* 2,2,6,6-Tetramethyl-1-Piperidinoxyl (TEMPO)



# Side Direct Spin Labeling (SDSL) of Proteins/Peptides

**Basic Scheme** 





# Side Direct Spin Labeling (SDSL) of Proteins/Peptides

CW EPR Distance Estimation up to  $\approx 2.5$  nm





jan.tarabek@uochb.cas.cz, 🤳 220-183-330 (IOCB)

EPR Principles & Applications

15 / 15

IOCB PRAG