NMR SPEKTROSKOPIE PRO CHEMIKY

1. Úvod

1.1 Historický úvod

1.2 Jazykové okénko

- 2. Principy NMR spektroskopie
 - 2.1 Jaderný spin
 - 2.2 Chemický posun
 - 2.3 Snímání NMR signálu
 - 2.4 Fourierova transformace
 - 2.5 Magnetické interakce jader
- 3. Pulzní sekvence a jejich elementy
 - 3.1 1D pulzní sekvence
 - 3.2 2D pulzní sekvence

3.3 3D a vícedimenzionální sekvence

- 4. Relaxace v NMR spektroskopii
 - 4.1 Podélná relaxace
 - 4.2 Příčná relaxace
 - 4.3 Relaxační mechanismy
- 5. Nukleární Overhauserův efekt
- 6. Gradienty, DOSY, MRI
- 7. Praktické aspekty NMR spektroskopie
 - 7.1 NMR spektrometr
 - 7.2 Příprava NMR experimentu
 - 7.3 Parametry NMR experimentu
 - 7.4 Zpracování NMR dat
- 8. ¹³C NMR
 - 8.1 Chemické posuny uhlíků
 - 8.2 Skalární interakce uhlíků
- 9. ¹H NMR
 - 9.1 Chemická a magnetická ekvivalence
 - 9.2 Spinový systém, řád spektra
 - 9.3 Chiralita
 - 9.4 Stínění jader prostorově blízkými chemickými vazbami nebo funkčními skupinami
 - 9.5 Vyměnitelné vodíky
 - 9.6 Vliv pole, koncentrace, rozpouštědla
 - 9.7 Chemické posuny vodíků
 - 9.8 Skalární interakce vodíků
- 10. Dynamické děje
 - 10.1. Chemické reakce
 - 10.2. Chemická výměna
- 11. Další běžně měřená jádra (¹⁹F, ³¹P, ¹⁵N, ²H)
- 12. Predikce NMR spekter
- 13. NMR spektra pevných látek

1. ÚVOD

Spektroskopie jaderné (nukleární) magnetické rezonance je metoda využívající magnetických vlastností atomových jader některých izotopů.

Dnes jsou tradiční metody NMR spektroskopie nepostradatelnou pomůckou syntetického chemika při sledování průběhu reakcí a ověřování struktury produktů. Speciální, časově náročnější techniky umožňují řešit struktury i velmi komplikovaných sloučenin, např. sekundární a terciární struktury biopolymerů, a studovat interakce mezi nimi. Obrovskou výhodou NMR spektroskopie biomolekul je, že můžeme zjišťovat jejich třídimenzionální strukturu za "fyziologických" podmínek (v roztoku o určitém pH, teplotě, iontové síle) Pomocí MR tomografie jsou dnes již běžně studovány tkáně a orgány v lidském těle. NMR spektroskopie nalezla také široké uplatnění v materiálové chemii, farmaceutickém průmyslu a ve fyzice pevných látek.

1.1 Historický úvod

V roce 1945 byly poprvé pozorovány signály jader vodíku ve vodě a v parafinu. V padesátých letech 20. století se objevují první sériově vyráběné NMR spektrometry. Měřena byla sice většinou pouze jádra vodíku ¹H, ale získané informace se ukázaly být nesmírně cennými při určování struktury sloučenin, především organických. První ¹³C NMR spektra byla popsána v roce 1957. Širokopásmový dekaplink vodíků se objevil v roce 1965. Od té doby se NMR spektroskopie velmi rychle rozvíjela a stala se nezbytnou součástí strukturní analýzy. Zavedení supravodivých magnetů a jejich zdokonalování umožnilo postupné zvyšování intenzity magnetického pole a tím i citlivosti a rozlišení metody. Objev dvoudimenzionálních technik v 70.tých letech dvacátého století vedl k technikám schopným podat kompletní informaci o skeletu molekuly a prostorovém uspořádání atomů. Metody umožňující snímání spekter nebo alespoň získávání určitých informací o jádrech atomů v malých prostorových elementech uvnitř objektů daly vzniknout NMR zobrazování (NMR imaging, MR tomografie, MRT).

O významu nukleární magnetické rezonance svědčí i několik Nobelových cen udělených v této oblasti. V roce 1943 získal Nobelovu cenu za fyziku Otto Stern za objev magnetického momentu protonu.

V roce 1944 získal Nobelovu cenu za fyziku Isidor Isaac Rabi za jeho rezonanční metodu pro zjištění magnetických vlastností atomových jader.

V roce 1952 získali Nobelovu cenu za fyziku Felix Bloch a Edward Mills Purcell za rozvoj nových metod pro přesná měření jaderného magnetismu a první detekci NMR signálu. V roce 1991 získal Nobelovu cenu za chemii Richard R. Ernst za jeho příspěvek k rozvoji nukleární magnetické rezonance s vysokým rozlišením, zavedení pulzních technik měření a použití Fourierovy transformace a zavedení dvoudimenzionálních NMR technik.

V roce 2002 získal Nobelovu cenu za chemii Kurt Wüthrich za vývoj NMR jako metody umožňující určení trojrozměrné struktury biologických makromolekul v roztoku.

V roce 2003 získali Nobelovu cenu za fyziologii a medicínu Paul C. Lauterbur a Peter Mansfield za vypracování metody zobrazování magnetickou resonancí.

2. PRINCIPY NMR SPEKTROSKOPIE

2.1 Jaderný spin

Z hlediska NMR můžeme atomová jádra jednotlivých izotopů rozdělit na tři skupiny:

1. Jádra, která mají nulové spinové kvantové číslo *I* (výraz spinové kvantové číslo se často nahrazuje výrazem spin nebo jaderný spin). Jsou to jádra se sudým počtem protonů i neutronů, jako např. ¹²C, ¹⁶O, ³²S. Tato jádra nemají jaderný magnetický moment μ a nejsou v NMR spektroskopii pozorovatelná ani nijak neovlivňují spektra jiných izotopů.

2. Jádra se spinovým kvantovým číslem / = 1/2. Tato jádra mají jaderný magnetický moment a jsou snadno měřitelná. Příkladem je proton, ¹H, který má vysoké přírodní zastoupení, a je nejběžněji měřeným jádrem. Uhlík ¹³C představuje další často měřené jádro. Má nižší citlivost a zároveň nízké přírodní zastoupení (1.11%), takže jeho signály jsou zhruba 5700 x slabší než signály ¹H. Další jádra se spinem 1/2 jsou například ¹⁵N, ¹⁹F, ³¹P.

3. Jádra se spinovým kvantovým číslem *I* > 1/2. Tato jádra mají vedle jaderného magnetického momentu i kvadrupolový moment a jsou velmi často obtížně měřitelná. Jádra s lichým nukleonovým číslem (součet počtu protonů a neutronů) mají poločíselná spinová kvantová čísla (1/2, 3/2, 5/2...). Jádra se sudým nukleonovým číslem a lichým počtem protonů mají celočíselná spinová kvantová čísla (1, 2, 3...).

Atomová jádra s nenulovým spinem mají vlastní jaderný magnetický moment μ

$$\mu = \frac{\gamma h \sqrt{I(I+1)}}{2\pi}$$

kde *h* je Plancova konstanta a γ je tzv. **gyromagnetický poměr,** konstanta charakteristická pro jádro každého izotopu. Pokud je jádro s nenulovým spinovým kvantovým číslem mimo magnetické pole, jaderný spin se nijak neprojevuje. V magnetickém poli o intenzitě B_0 je výsledkem silového působení magnetického pole a magnetického momentu jádra precesní pohyb vektoru magnetického momentu jádra μ kolem směru B_0 s frekvencí

$v = \gamma B_0 / 2\pi$

označovanou jako Larmorova precesní frekvence. Z kvantové mechaniky plyne, že precedující vektor μ může zaujmout celkem 2/ + 1 magnetických stavů, lišících se magnetickým kvantovým číslem *m*, jimž přísluší v magnetickém poli **B**₀ hodnota energie

$E = -\gamma m h B_0 / 2\pi$

Soustředíme-li se na nejčastěji měřená jádra se spinovým číslem I = 1/2, magnetické kvantové číslo může nabývat dvou hodnot m = -1/2 a m = 1/2. Jaderný magnetický moment může mít v magnetickém poli o indukci **B**₀ dva stavy s energetickými hladinami označovanými α a β :

$$E_{\alpha} = -0,5 \ \gamma h B_0 / 2\pi$$

 $E_{\beta} = 0,5 \ \gamma h B_0 / 2\pi$,

mezi nimiž je energetický rozdíl:

$\Delta E = \gamma h B_0 / 2 \pi$

Tento energetický rozdíl odpovídá frekvenci přechodu v = $\gamma B_0/2\pi$ (tzv. **NMR rezonanční podmínka**). Tato frekvence leží u dnes dosahovaných magnetických polí v oblasti desítek až stovek MHz. Zastoupení (populace) jader na obou hladinách je téměř stejné vzhledem k malému energetickému rozdílu; nadbytek na nižší hladině je v závislosti na intenzitě magnetického pole řádově 10⁻⁵. Poměr jader ve spinovém stavu α a ve spinovém stavu β lze vypočítat pomocí Boltzmannova zákona:

$$N_{\alpha}/N_{\beta} = e^{-\Delta E/k_bT}$$

kde k_b je Boltzmannova konstanta (= 1,3805 x 10⁻²³ JK⁻¹) a za Δ*E* dosadíme rozdíl mezi energiemi spinů α a β. Například při pokojové teplotě v poli o indukci 11.74 T platí pro vodíky ¹H: $N_\beta \approx 0,99992 N_\alpha$, to znamená, že na 100000 vodíkových jader se spinovým stavem α připadá 99992 jader ve stavu β. Čím větší je indukce magnetického pole, tím větší je energetický rozdíl mezi stavy α a β, a tím větší je rozdíl v populacích jednotlivých spinových stavů. Větší rozdíl v populacích stavů vede k větší citlivosti NMR metody.

Citlivost NMR spektroskopie je největší slabinou této spektrální metody. V porovnání například s hmotnostní spektrometrií je množství látky nutné pro analýzu mnohem vyšší – řádově miligramy. Takové množství látky ale většinou pro organické chemiky nebývá problém připravit a navíc NMR spektroskopie je nedestruktivní metoda, tedy veškerý materiál použitý pro analýzu lze získat zpět. Podstatná část vývoje NMR spektrometrů i měřících technik je vedena snahou o zvýšení citlivosti.

Intenzita signálů (A) je důležitou informací, kterou je možno z NMR spekter získat. Udává se relativně vůči ostatním signálům a lze ji vyjádřit vzorcem:

$$A = \frac{niB_0^2 \gamma I(I+1)}{T}$$

kde *n* je počet ekvivalentních jader a *i* je přírodní zastoupení daného jádra.

Protože v jednom spektru jsou společně měřena vždy jádra stejného druhu, ve stejném magnetickém poli a při stejné teplotě, je plocha každého signálu úměrná počtu ekvivalentních jader v molekule. Z výše uvedeného vzorce také vyplývá vztah mezi intenzitami signálů různých jader. Změříme-li na stejném přístroji a při stejné teplotě protonové a křemíkové spektrum sloučeniny obsahující seskupení -SiCH₃, zjistíme, že intenzity signálů vodíku a křemíku jsou v poměru 8135:1.

Abychom u jader s nízkou citlivostí nebo s nízkým zastoupením měřeného izotopu dosáhli potřebného poměru signálu k šumu (S/N), musíme používat koncentrovanější vzorky, vzorky sloučenin obohacených měřeným izotopem, případně větší kyvety. Další možností je používat dlouhé akumulace spekter.

Z výše uvedeného vzorce je patrné, že intenzita signálu (a tedy citlivost měření) můžeme podstatně zvýšit, provádíme-li NMR experimenty na spektrometrech s vyšším magnetickým polem. Proto se neustále vyvíjejí spektrometry se stále vyšším magnetickým polem.

V tabulce 2.1 jsou shrnuty důležité magnetické vlastnosti jader vybraných izotopů. Všimněte si, že gyromagnetický poměr γ může mít kladné i záporné znaménko. Jádra s opačným znaménkem γ mají opačný směr precese jejich jaderných magnetických momentů. V předposledním sloupci je uvedena

rezonanční frekvence v magnetickém poli o indukci 11.74 T (Tesla, V.s.m⁻²). V NMR spektroskopii je zvykem udávat indukci B_0 magnetického pole určitého přístroje jako frekvenci, při níž rezonují jádra ¹H. Hovoříme tak často o 500 MHz NMR spektrometru, "intenzitě pole 500 MHz" a podobně. V posledním sloupci tabulky je uvedena relativní citlivost izotopů pro měření NMR spekter. Nejcitlivějším izotopem je ¹H. Ostatní izotopy jsou méně citlivé, protože mají menší gyromagnetický poměr, tím pádem i nižší energetický rozdíl mezi spinovými stavy α a β a nižší přebytek spinových stavů α v rovnováze. K nízké citlivosti některých izotopů přispívá i jejich malý přirozený výskyt. Například izotop ¹³C má přirozený výskyt kolem 1% a zbytek (99%) jsou magneticky neaktivní jádra ¹²C, to znamená, že pouze jedna setina uhlíkových jader přispívá k NMR signálu.

ládro	Spin	Přirozený	γ/	NMR frekvence v poli	Citlivost
Jadio		výskyt / %	10 ⁷ radT ⁻¹ s ⁻¹	11,74 T / MHz	
¹ H	1/2	99,99	26,75	500,0 MHz	100
² H	1	0,01	4,11	76,8 MHz	0,0001
³Н	1/2	-	28,54	533,3	0
¹² C	0	98,93	_	-	-
¹³ C	1/2	1,07	6,73	125,7 MHz	0,02
¹⁴ N	1	99,63	1,93	36,1 MHz	0,1
¹⁵ N	1/2	0,37	-2,71	50,7 MHz	0,0004
¹⁶ O	0	99,96	_	-	-
¹⁷ O	5/2	0,037	-3,63	67,8 MHz	0,001
¹⁹ F	1/2	100	25,18	470,4 MHz	83
³¹ P	1/2	100	10,84	202,4 MHz	6,6

Tabulka 2.1. Magnetické vlastnosti izotopů nejdůležitějších prvků, které se vyskytují v organických látkách.

Jak již bylo uvedeno, jádra s I = 1/2 mohou nabývat dvou spinových stavů. V NMR se ustálilo používání souřadného systému tak, že kladný směr osy z míří ve směru magnetického pole. V **rovnovážném stavu** mimo magnetické pole mají jaderné magnetické momenty náhodnou orientaci (Obrázek 2.1), v magnetickém poli mají jaderné magnetické momenty také náhodnou orientaci, ale postupně se vytvoří mírný přebytek jader s energetickou hladinou α , které mají kladný průmět jaderného magnetického momentu do osy magnetického pole (z). Navíc v magnetickém poli všechny jaderné magnetické momenty vykonávají precesní pohyb kolem osy z. Malý přebytek jader na nižší energetické hladině (jsou to podle konvence spiny nad rovinou *xy*) způsobí, že **celková magnetizace** M vzorku (vektorový součet magnetických momentů jednotlivých jader) směřuje ve směru osy z. Na obrázku 2.1 je označena tučnou šipkou. Magnetizace M je na rozdíl od jaderných magnetických momentů makroskopická veličina, se kterou lze určitými způsoby manipulovat a poté ji detekovat.

Obrázek 2.1. Jaderné magnetické momenty v nulovém a nenulovém magnetickém poli.

2.2 Chemický posun

Z výše uvedeného vztahu pro energetický rozdíl mezi spinovými stavy vyplývá, že všechna jádra jednoho izotopu vložená do téhož magnetického pole budou rezonovat při stejné frekvenci. Kdyby tomu tak bylo, nemělo by smysl hovořit o NMR spektrech, protože tato spektra by obsahovala pouze jediný signál pro každý izotop obsažený ve vzorku.

Pozorování NMR spekter je umožněno tím, že jádra atomů jsou od magnetického pole, v němž se nacházejí, **stíněna** elektrony. Elektrony svým pohybem vytvářejí magnetické pole, které má opačný směr než vnější magnetické pole B_0 . Jádra stejného izotopu, která nemají stejné chemické okolí (tedy nejsou chemicky ekvivalentní) se liší rozložením elektronů ve svém okolí a tím sice velmi nepatrně, ale pozorovatelně, intenzitou stínění. Ta je úměrná vnějšímu magnetickému poli B_0 a charakterizujeme ji stínící konstantou σ . Efektivní magnetické pole B_{ef} , které působí na jádro, vyjadřuje vztah

$$B_{ef} = B_0 - \sigma B_0 = B_0 \cdot (1 - \sigma).$$

Jestliže na jádra působí různě velké efektivní magnetické pole, budou mít tato jádra i různou rezonanční frekvenci. Například pokud mají jádra ¹H tetramethysilanu (TMS) v poli 11.74 T rezonanční frekvenci přesně 500000000 Hz (500 MHz), vodíky CH₃ skupiny methanolu jsou méně stíněné a budou mít rezonanční frekvenci 500001650 Hz a vodíky benzenu, které jsou ještě méně stíněné, budou mít rezonanční frekvenci 500003635 Hz. V magnetickém poli o poloviční intenzitě, by vodíky TMS rezonovaly při 250 MHz, vodíky CH₃ skupiny methanolu při 25000825 Hz a vodíky benzenu při 250001817,5 Hz. Pro vyjadřování rezonančních frekvencí se ujala stupnice chemického posunu δ s jednotkou **ppm** (parts per milion). Chemický posun je definován takto:

$$\delta_{\rm x} = 10^6 \cdot (v_{\rm x} - v_{\rm ref}) / v_{\rm ref}$$

kde δ_x je chemický posun atomu x, v_x je rezonanční frekvence atomu x a v_{ref} je rezonanční frekvence referenční sloučeniny. Budeme-li za referenční sloučeninu považovat TMS a dosadíme-li výše uvedené rezonanční frekvence do vzorce, vyjde nám, že chemický posun vodíků methylové skupiny v methanolu je 3,3 ppm a chemický posun benzenových vodíků je 7,27 ppm. Hlavní výhodou chemického posunu δ je to, že nezávisí na velikosti magnetického pole, tedy u různých NMR spektrometrů s různými indukcemi magnetického pole nabývá vždy stejné hodnoty. Jádra, která jsou více stíněna elektrony, mají nižší chemický posun. Směr od vyšších k nižším chemickým posunům δ se v NMR spektrech také nazývá směr k vyššímu magnetickému poli ("upfield shift"), k nižší frekvenci nebo diamagnetický posun. Opačný směr k vyšším hodnotám δ se nazývá paramagnetický posun nebo směr k nižšímu poli ("downfield shift") nebo směr k vyšší frekvenci (Obrázek 2.2). Termíny "downfield" a "upfield" jsou historické, přesto se s nimi můžeme běžně setkat. Můžeme je vysvětlit tak, že pokud bychom chtěli dosáhnout stejné rezonanční frekvence, museli bychom na více stíněná jádra použít vyšší magnetické pole (upfield) a na méně stíněná jádra nižší magnetické pole (downfield).

Obrázek 2.2. Schematické znázornění ¹H NMR spektra se signály při vyšším a nižším chemickém posunu.

Jádra se stejným chemickým okolím se nazývají **chemicky ekvivalentní** a mají stejné stínění elektrony a tedy i stejnou rezonanční frekvenci (společný signál ve spektru). Například v molekule benzenu jsou díky symetrii všechna uhlíková jádra chemicky ekvivalentní a v ¹³C NMR spektru benzenu budeme pozorovat pouze jeden signál. Totéž platí pro vodíková jádra, v ¹H spektru benzenu je jediný signál s příslušným chemickým posunem. Naproti tomu v molekule toluenu nejsou všechna uhlíková jádra chemicky ekvivalentní; díky symetrii molekuly budeme v ¹³C spektru očekávat 5 signálů: jeden signál uhlíku methylové skupiny, jeden signál kvartérního aromatického uhlíku a tři signály CH aromatických uhlíků. Uhlíky C2 a C6 jsou chemicky ekvivalentní a budou mít společný signál, uhlíky C3 a C5 jsou také chemicky ekvivalentní a budou rezonovat při stejné frekvenci (obrázek 2.3). Ve vodíkovém spektru toluenu budeme očekávat 4 signály: jeden pro vodíky methylové skupiny (tři vodíky v methylové skupině jsou vždy ekvivalentní) a tři aromatické signály, z nichž dva budou mít dvojnásobnou intenzitu.

Obrázek 2.3. ¹³C NMR spektra benzenu a toluenu.

Chemicky ekvivalentními atomy nejlépe poznáme podle toho, že při postupném nahrazení každého z nich jiným atomem vznikne vždy stejná sloučenina. Například diethylether obsahuje 6 chemicky ekvivalentních protonů v methylových a 4 chemicky ekvivalentní protony v -CH₂- skupinách. Náhradou kteréhokoliv z prvních 6 atomů vodíku např. chlorem vznikne 1-ethoxy-2-chlorethan, kteréhokoliv ze zbývajících 4 vodíků 1-ethoxy-1-chlorethan. Protonové NMR spektrum diethyletheru bude tedy obsahovat dva signály, jejichž intenzity budou v poměru 6:4, tedy 3:2. Intenzity nejsou představovány výškou pásů, ale jejich plochou; často se nazývají integrálními intenzitami. Uvedená pravidla platí pouze pro spektra, u nichž nebyla použita nějaká manipulace s populacemi na jednotlivých hladinách. ¹H NMR spektra jsou příkladem spekter, u nichž lze takto počty chemicky ekvivalentních jader zjistit.

2.3 Snímání NMR signálu

Předchozí výklad stačí k pochopení klasické, tzv. **CW** (continuous wave) NMR spektroskopie: Vzorek obsahující magneticky aktivní jádra vložíme do magnetického pole a do blízkosti vzorku umístíme cívku, kterou protéká střídavý proud o frekvenci v oblasti MHz. Potom měníme spojitě intenzitu magnetického pole B_0 nebo frekvenci proudu v cívce. Při splnění výše uvedené rezonanční podmínky dojde k absorpci radiofrekvenčního záření, kterou můžeme měřit různými způsoby běžnými v elektrotechnice. CW NMR spektrometry se běžně vyráběly až do sedmdesátých let minulého století. Jejich elektronika byla poměrně jednoduchá a ke zpracování dat nebyl třeba počítač. Generátor frekvence byl řízen pozicí pisátka na ose X zapisovače nebo osciloskopu a v ose Y byl registrován zesílený signál z měřiče absorbce.

Většina současných spektrometrů pracuje v jiném, tzv. **FT** (Fourier transform) modu. Při něm jsou všechna jádra jednoho izotopu excitována velmi krátkým radiofrekvenčním **pulzem** o trvání řádově několik μ s. Tak krátký pulz má jistou neurčitost frekvence a pokryje obvykle frekvenční oblast všech jader jednoho izotopu. Pulz má za následek vychýlení vektoru magnetizace *M* z osy *z*, typický je například 90° pulz, který stočí vektor magnetizace do roviny *xy*. Larmorova precese jednotlivých jaderných magnetických momentů μ vede k precesi makroskopické magnetizace se stejnou (Larmorovou) frekvencí. Precesní pohyb magnetizace indukuje elektrický proud v měřící cívce. Záznam tohoto indukovaného proudu (tedy NMR signál) se označuje **FID** (free induction decay, volné doznívání indukce). FID má tvar exponenciálně tlumené periodické funkce představující součet

sinusoid s frekvencemi příslušejícími jednotlivým signálům a představuje závislost intenzity proudu indukovaného ve snímací cívce na čase. FID je v digitální formě uložen do paměti počítače a podroben Fourierově transformaci vedoucí ke spektru představujícímu závislost intenzity na frekvenci.

Výhodou FT NMR spektroskopie je především možnost opakovat rychle po sobě stejná měření a výsledné FIDy sčítat. Tím se zvyšuje citlivost měření a je možno měřit i zředěné vzorky nebo jádra s velmi malou citlivostí. Intenzita signálu roste úměrně počtu akumulovaných FIDů, intenzita šumu roste s počtem akumulací úměrně jejich druhé odmocnině. Provedeme-li tedy akumulaci 100 FIDů, zlepší se poměr signálu k šumu 10x. Chceme-li zlepšit poměr signálu k šumu dvojnásobně, musíme počítat pro experiment se čtyřnásobně dlouhou dobou (obrázek 2.4). Druhou výhodou FT NMR je možnost pomocí pulzů manipulovat se spinovými systémy či s populacemi na jednotlivých hladinách a tím získávat spektra obsahující další cenné informace.

Obrázek 2.4. ¹³C NMR spektra (s ¹H dekaplinkem) allyl glycidyl etheru měřená s různým počtem průchodů pulzní sekvencí (*ns*).

2.4 Fourierova transformace

FID je časový záznam intenzity indukovaného proudu v měřící cívce (na ose *x* je čas) a spektrum je závislost spektrální intenzity na frekvenci (na ose *x* je frekvence). Fourierova transformace je matematický nástroj, který umožňuje z časového záznamu (FIDu) získat spektrum. Na obrázku 2.5 je několik příkladů časových závislostí a spekter vzniklých po Fourierově transformaci. Obrázek 2.5a vlevo představuje neklesající periodickou funkci (cosinus), u které za jednu sekundu proběhnou dvě periody. Vpravo je pak spektrum vzniklé po Fourierově transformaci této funkce. Ve spektru vidíme polopřímku protínající osu *x* v bodě 2 Hz (2 periody za sekundu). Na obrázku 2.5b je klesající cosinová funkce se stejnou periodou jako na obrázku 2.5a. Podobně by vypadal FID změřený u vzorku s jedním signálem. Fourierovou transformací této klesající funkce vznikne signál u 2 Hz. Pološířka signálu (šířka signálu v polovině jeho výšky) souvisí s rychlostí klesání cosinové funkce. Čím rychleji klesá periodická

funkce k nule, tím širší je výsledný signál. To je vidět na obrázku 2.5c, kde je zobrazena periodická funkce se stejnou periodou (dva cykly za sekundu), která ale rychleji klesá k nule. Ve výsledném spektru je širší signál u 2 Hz. Plocha signálu je stále stejná; když se zvětšila šířka signálu, snížila se jeho výška. Na dalším obrázku 2.5d je opět klesající cosinová funkce, tentokrát s periodou pět cyklů za sekundu. Spektrum vzniklé po Fourierově transformaci obsahuje jeden signál u 5 Hz. Na obrázku 2.5e je časová funkce, která vznikla součtem dvou klesajících cosinů s periodou dva a pět cyklů za sekundu. Ve výsledném spektru jsou pak dva signály u 2 Hz a 5 Hz.

Obrázek 2.5. Fourierova transformace převádí FID (časovou závislost) na spektrum (frekvenční závislost).

2.5 Magnetické interakce jader

V NMR spektrech se mohou projevovat dva typy magnetických interakcí mezi jádry atomů v molekulách:

1) Přímé dipól-dipólové (dipolární) interakce jsou důsledkem vzájemného působení magnetických momentů jader prostorem. V izotropních prostředích (kapaliny, roztoky) jsou tyto interakce zprůměrovány k nule rychlými reorientacemi molekul v důsledku Brownova pohybu.

2) Nepřímé spin-spinové interakce (skalární) jsou zprostředkovány vazebnými elektrony (elektrony mají také svůj spin) a způsobují štěpení (multiplicitu) signálů pozorovatelné v NMR spektrech měřených v izotropních prostředích.

Mechanismus nepřímé spin-spinové interakce si můžeme ukázat na jednoduchém příkladu heteronukleární interakce v molekule chloroformu ¹³CHCl₃ (obrázek 2.6). Magnetický moment vodíku způsobuje slabou magnetickou polarizaci vazebných elektronů (energeticky výhodnější je opačná orientace spinu jádra a elektronu). Spiny valenčních elektronů se řídí jednak Hundovým pravidlem, jednak Pauliho principem. Podle Pauliho principu mají elektrony v jednom orbitalu vždy opačný spin. Interakce s jadernými spiny vede ke dvěma možným stavům - mají-li oba jaderné spiny (¹H i ¹³C) stejné znaménko, energie celého systému je poněkud vyšší než u systému s různými znaménky jaderných spinů, kde se znaménka jaderných a elektronových spinů střídají.

Na obrázku 2.6 vpravo je zobrazen energetický diagram jádra uhlíku ¹³C v magnetickém poli bez spin-spinové interakce. Toto jádro má dva možné spinové stavy ($\alpha \ a \beta$), mezi nimiž je energetický rozdíl ΔE a ve spektru lze pozorovat jeden signál odpovídající tomuto přechodu ($\alpha \rightarrow \beta$). Na obrázku vpravo je situace jádra uhlíku ¹³C s nepřímou spin-spinovou interakcí s jádrem vodíku. Oba spinové stavy uhlíku ($\alpha \ i \beta$) jsou v důsledku interakce se spiny jádra vodíku štěpeny na dvě energetické hladiny. V tomto diagramu lze pozorovat dva různé přechody jádra ¹³C $\alpha \rightarrow \beta$. Oba přechody mají různý energetický rozdíl ΔE , to se projeví ve spektru tím, že pozorujeme dvě různé frekvence. Signál uhlíku ¹³C se tedy rozštěpil na dvě linie o stejné intenzitě. Stejné rozštěpení signálu můžeme zároveň pozorovat i v ¹H spektru (energetické hladiny jádra ¹H jsou rozštěpeny díky interakci s jádrem ¹³C).

Obrázek 2.6. Heteronukleární skalární spinová interakce v molekule chloroformu.

Velikost nepřímé spin-spinové interakce udává interakční konstanta J (jednotkou je Herz, Hz). Tato konstanta se označuje vlevo nahoře indexem udávajícím počet vazeb mezi interagujícími jádry. Podle počtu vazeb mezi interagujícími jádry jsou J označovány jako přímé (¹J), geminální (²J), vicinální (³J) a

interakce na velkou vzdálenost (⁴*J*, ⁵*J*,...). V našem příkladu molekuly ¹³CHCl₃ má přímá spin-spinová interakce ¹H-¹³C hodnotu ¹*J* = 209 Hz. Interakční konstanta *J* může být kladná nebo záporná, obojí se ale v jednoduchých NMR spektrech projeví stejně, ze spektra lze odečíst absolutní hodnotu *J* ze vzdáleností čar v multipletech. Na rozdíl od rezonanční frekvence interakční konstanty **nezávisí na indukci vnějšího magnetického pole**. Skalární interakci **nelze pozorovat mezi chemicky ekvivalentními jádry**.

Pokud jádro interaguje s více magnetickými jádry, jejich vliv se ve spektru projevuje následovně: každá linie, která vznikne interakcí s jedním jádrem, je dále štěpena na další linie interakcí s dalším jádrem. U běžných jader s *I* = 1/2 dochází při každé interakci ke vzniku dvou linií z jedné původní. Signál se potom skládá z řady linií a jeho celkový vzhled nazýváme **multiplicita signálu**.

Tak například jádra štěpená interakcí se dvěma jádry se stejnými interakčními konstantami vytvoří *triplet* o poměru intenzit linií 1:2:1 (obrázek 2.7). Prostřední dvojnásobná linie zde vznikla splynutím dvou linií. Tato situace nastane obvykle při štěpení dvěma chemicky ekvivalentními jádry a tento tvar budou mít např. signály ¹³C označených v následujících sloučeninách: **C**H₂Cl₂, Cl₂C=**C**H₂.

Pokud nejsou interakční konstanty stejné, pozorujeme ve spektru čtyři linie o stejných intenzitách, tzv. *dublet dubletů*. Vzdálenosti 1. a 2. linie či 3.a 4. linie představují jednu interakční konstantu, vzdálenosti 1. - 3. a 2. - 4. konstantu druhou.

Pro štěpení třemi interagujícími jádry již existuje mnoho tvarů výsledného multipletu. Při štěpení se třemi stejnými interakčními konstantami vznikne *kvartet* (čtyři linie v poměru intenzit 1:3:3:1). Kvartetovou strukturu mají obvykle signály jader ¹³C methylové skupiny, která obsahuje tři ekvivalentní protony: **C**H₃OH, **C**H₃Cl.

Ostatní tvary multipletů nazýváme podle celkového vzhledu např. dublet tripletů, triplet dubletů a pod. Není-li zřejmé, jakou strukturu signál má (v důsledku překryvů či spektra vyššího řádu), nazýváme ho obecně *multiplet*.

V případě štěpení signálu skalárními interakcemi se stejnými velikostmi interakčních konstant můžeme poměr intenzit linií ve výsledném multipletu zjistit z Pascalova trojúhelníku (obrázek 2.8).

Obrázek 2.7. Štěpení signálu jádra, které má skalární interakci s jedním, dvěma nebo třemi dalšími jádry.

```
singlet (s)
                  1
     dublet (d)
                1
                    1
    triplet (t) 1 2 1
 kvartet (q) 1
                3
                    3
                       1
 pentet (p) 1 4
                  6
                      4
                         1
 sextet 1
             5 10 10
                       5
                           1
           6 15 20 15
                         6
                             1
septet
       1
```

Obrázek 2.8. Pascalův trojúhelník – každé číslo v něm je vždy součet dvou čísel, které se nacházejí nad ním. Pomocí Pascalova trojúhelníku můžeme odvodit poměr intenzit linií v multipletech (dublet – 2 linie s poměrem intenzit 1:1, triplet – 3 linie s poměrem intenzit 1:2:1, atd.)

Štěpení signálů způsobené spin-spinovými interakcemi může ztěžovat interpretaci ¹³C NMR spekter (dochází k častějšímu překryvu signálů) a navíc zhoršuje poměr signálu k šumu (například signál rozštěpený na dublet má poloviční výšku než singlet) a tím snižuje citlivost měření ¹³C NMR

spekter a zvyšuje se doba nutná pro naměření spekter. Heteronukleární (¹H-¹³C) spin-spinové interakce lze odstranit pomocí takzvaného širokopásmového dekaplinku. Během celé doby měření ¹³C spekter jsou jádra vodíku ozařována dalším elektromagnetickým polem s frekvencí odpovídající rezonanční frekvenci jader vodíku. To způsobí rychlé přechody mezi spinovými stavy α a β a tím pádem vyrušení spin-spinové interakce jader vodíku s jádry uhlíku. ¹³C NMR spektra se většinou měří s dekaplinkem.

Heteronukleární (¹H-¹³C) skalární interakce lze pozorovat jako takzvané ¹³C satelity v ¹H NMR spektrech. 99% uhlíkových jader má izotop ¹²C a jsou tedy magneticky neaktivní a nezpůsobují štěpení signálů kvůli skalárním interakcím. Proto například v ¹H NMR spektru chloroformu (CHCl₃) je majoritním signálem singlet (obrázek 2.9). Izotop ¹³C, který je přirozeně zastoupen přibližně v 1% atomů uhlíku, způsobuje štěpení signálu vodíku na dublet. Ve vodíkovém spektru chloroformu můžeme pozorovat dva málo intenzivní signály, které dohromady tvoří přibližně 1% plochy celkového signálu. Tyto dva malé signály se nachází téměř symetricky kolem majoritního signálu a vzdálenost mezi nimi odečtená v Hz odpovídá interakční konstantě ¹J(¹³C–¹H).

Obrázek 2.9. ¹³C satelity v ¹H NMR spektru chloroformu.

3. PULZNÍ SEKVENCE A JEJICH ELEMENTY

V moderní NMR spektroskopii se se spinovými systémy často manipuluje celou řadou po sobě následujících pulzů, mezi nimiž jsou určité prodlevy, mluvíme pak o pulzních sekvencích, které se dají zapsat graficky. NMR experiment je jednoznačně definován příslušnou pulzní sekvencí, která obsahuje detailní časový popis všech dějů v průběhu experimentu.

K pochopení vývoje spinového systému v průběhu mnoha jednoduchých pulzních sekvencí lze použít **vektorový model**, který popisuje chování vektorů magnetizace po aplikaci pulzů. Pro zjednodušení tohoto popisu se používá rotující soustava souřadná, která má s bežnou (laboratorní) soustavou souřadnou společnou osu *z*, a která rotuje kolem této osy s frekvencí odpovídající Larmorově frekvenci sledovaných jader.

Radiofrekvenční pulz (pomocí oscilujícího magnetického pole B_1 kolmého na směr pole B_0) způsobuje otáčení vektoru magnetizace M kolem osy pole B_1 . Vliv radiofrekvenčního pulzu závisí na jeho výkonu, délce a fázi a na stavu spinového systému v okamžiku pulzu. Například pulz ve směru osy x otáčí magnetizaci kolem této osy a pokud vycházíme z rovnovážného stavu, kdy vektor magnetizace směřuje odél osy z, pulz ve směru osy x bude otáčet vektor magnetizcace v rovině yz o sklápěcí úhel α , jehož hodnota závisí na délce a výkonu pulzu. Vycházíme-li z rovnovážného stavu, 90° pulz ($\pi/2$ pulz) otočí magnetizaci o 90° do roviny xy. 180° pulz (π pulz) otočí magnetizaci do osy -z. Směr (osa) působení radiofrekvenčního pulzu se také nazývá fáze pulzu. Pulzní sekvence používají různé (ale předem dané) fáze jednotlivých pulzů.

Obecně platí, že čím intenzivnější je radiofrekvenční pulz, tím je méně selektivní (excituje širší spektrální oblast). Při měření jednodimenzionálních NMR spekter se nejčastěji používají velmi krátké (řádově mikrosekundy) a intenzivní pulzy, nazývané tvrdé pulzy (hard pulses), které excitují co největší frekvenční oblast daného jádra. Spektrální šířku Δv excitovanou tvrdým 90° pulzem můžeme vypočítat podle přibližného vzorce:

$$\Delta v = 1/4t_P$$

kde *t*_P je délka použitého 90° pulzu. Mimo tuto spektrální šířku nedochází k úplné excitaci, sklápěcí úhel je menší než 90° a intenzita signálů ve spektru je nižší. Vzdálenější spektrální oblasti pak nejsou excitovány vůbec. Například 90° pulz o délce 5 µs excituje spektrální oblast o šířce asi 50 kHz, což je dostačující při měření například vodíkových nebo uhlíkových jader na 500 MHz spektrometru (uvažujeme-li šířku ¹H spektra 15 ppm, potřebná spektrální šířka je 15 x 500 Hz = 7500 Hz, spektrální šířka ¹³C spektra na témže spektrometru odpovídá 200 x 125 Hz = 25000 Hz). Problém s excitací celého spektra naráz může nastat při měření spekter fluoru ¹⁹F nebo dalších jader s velkým rozsahem chemických posunů. Budeme-li chtít napřílad měřit jádra ¹⁹F s chemickými posuny v rozsahu 400 ppm na 500 MHz spektrometru (rezonanční frekvence jader ¹⁹F je přibližně 470 MHz), potřebovali bychom dosáhnout excitace se spektrální šířkou 400 x 470 Hz = 188 kHz, což by vedlo k nutnosti použít velmi krátké a intenzivní pulzy, které přesahují technické možnosti běžných NMR sond. Z tohoto důvodu je nutné některá spektra měřit po částech s menšími spektrálními šířkami.

Selektivní pulzy excitují pouze vybranou frekvenční oblast. Selektivity pulzu lze dosáhnout snížením intenzity (výkonu) pulzu a jeho prodloužením. Moderní NMR spektrometry využívají k selektivní excitaci **tvarované pulzy**, tvořené posloupností mnoha po sobě následujících pulzů, které se liší výkonem a fází. Pomocí tvarovaných pulzů lze zároveň excitovat několik frekvenčních oblastí ve spektru. Selektivní pulzy se v grafickém zápisu pulzních sekvencí zobrazují oblým tvarem připomínajícím obrácené U.

Maximální intenzity NMR signálu je dosaženo, když je magntizace sklopena o 90° z rovnovážného stavu (osy z) do roviny xy. Návrat magnetizace do rovnováhy z roviny xy je ale delší než při použití menšího sklápěcího úhlu a je tedy nutné čekat déle před dalším průchodem pulzní sekvencí (**repetiční čas** se prodlužuje). Repetiční čas pulzní sekvence t_r při akumulaci FIDů (načítání signálu) lze tedy zkrátit při použití sklápěcího úhlu $\alpha < 90^\circ$. Pro optimální sklápěcí úhel, tzv. Ernstův úhel platí rovnice:

$$\cos \alpha = \exp(-t_r/T_1)$$

kde T₁ je relaxační čas charakterizující návrat magnetizace do osy z (viz kapitola 4.1).

Některé pulzní sekvence používají tzv. adiabatické pulzy, což jsou pulzy modulované frekvenčně i amplitudou takovým způsobem, že k manipulaci se spinovým systémem dochází postupně pomalou změnou excitační frekvence. Při použití adiabatických pulzů nejsou tedy jednotlivé spiny s různou rezonanční frekvencí excitovány ve stejný okamžik.

Gradientový pulz je dalším možným elementem pulzní sekvence. Jedná se o krátkodobé vytvoření gradientu magnetického pole **B**₀. Význam gradientových sekvencí je hlavně ve vícedimenzionální spektroskopii, při měření difuzních koeficientů anebo při potlačení signálu rozpouštědla. V grafickém záznamu pulzních sekvencí se gradientové pulzy zapisují do samostatné řádky nazvané PFG (Pulse Field Gradient). Využití gradientů v NMR spektroskopii je věnována kapitola 6.

Měření NMR dat (snímání FIDu) se v pulzních sekvencích značí trojúhelníkem.

Použití druhého oscilujícího magnetického pole B_2 (vedle excitačního pole B_1) je označováno jako experiment s **dekaplinkem**. Podle toho, zda pozorovaná a dekaplovaná jádra patří témuž izotopu či nikoliv, rozlišujeme homo- a heteronukleární dekaplink. Míra perturbace spinového systému závisí na intenzitě ozařovacího pole B_2 a jeho frekvenci. Pokud je dekaplink dostatečně intenzivní, projeví se kolapsem multipletů (odtraněním štěpení signálů kvůli skalárním interakcím s dekaplovaným jádrem).

Při **selektivním dekaplinku** vodíků se používá pole B_2 (s frekvencí rovnou rezonanční frekvenci vybraného vodíku), které způsobí rychlé přechody mezi energetickými hladinami jader tohoto vodíku. Doba života t_H spinových stavů vodíkových jader se zkracuje, podmínka pro pozorování jeho interakcí s ostatními jádry X ($t_H > 1/J(H-X)$) přestává platit a všechny interakce J(H-X) ve spektru zmizí.

Použitím silnějšího pole B_2 (obvykle s vhodnou modulací) lze současně ozařovat jádra s různými rezonančními frekvencemi. Je-li takto ozařována celá frekvenční oblast protonového spektra hovoříme o **širokopásmovém dekaplinku** vodíků. V případě dekaplinku protonů (s šířkou spektra např. 10 ppm) to znamená, že na spektrometru s pracovním kmitočtem 500 MHz musí dekaplink pokrýt frekvenční pásmo alespoň 5000 Hz. K tomu je třeba používat dekaplovacího kmitočtu s vyšším výkonem než při selektivním dekaplinku a nosný kmitočet modulovat.

V pulzní sekvenci je dekaplink označen obdélníkem ve vodíkovém kanále a označením BB (zkratka z Broad Bend decoupling – širokopásmový dekaplink). Širokopásmový dekaplink vodíků zapnutý v celém průběhu pulzní sekvence navíc vede ke zvýšení rozdílů v populacích hladin pozorovaných jader X (ustavení NOE, kapitola 5) a tedy k vyšší intenzitě naměřených signálů.

Je-li silné pole B_2 umístěno mimo frekvenční oblast protonového spektra, jde o **mimorezonanční dekaplink** vodíků a ve spektru jader X pak pozorujeme místo pravých hodnot redukované interakční konstanty. Jejich velikost klesá s rostoucí amplitudou B_2 a klesajícím rozdílem frekvencí $v_2 - v_X$.

3.1 1D pulzní sekvence

Nejjednodušší možná pulzní sekvence obsahuje pouze jeden pulz a je vhodná pro měření libovolného jádra bez ozařování jiných jader. Je běžně používána při měření protonových spekter. Její grafické schéma obsahuje tři části (obrázek 3.1). Při akumulaci spekter se tato pulzní sekvence stále opakuje a FIDy získané při každé akvizici (snímání dat) se sčítají. Jako konkrétní příklad si můžeme představit, že měříme ¹H NMR spektrum směsi dvou látek (například CHCl₃ a CH₂Cl₂). V každé z těchto látek mají vodíková jádra jiné chemické okolí a tedy i jiné rezonanční frekvence, musíme tedy uvažovat dva různé vektory magnetizace.

Obrázek 3.1. Nejjednodušší pulzní sekvence.

Vývoj spinového systému v průběhu tří částí této sekvence probíhá takto:

1. Přípravná perioda d_1 trvá většinou několik sekund a během ní působí na vzorek pouze vnější magnetické pole. Ustaví se rovnováha v populacích spinů po pulzu nebo pulzech v předchozím průchodu sekvencí (proběhne relaxace) a magnetizace obou složek směsi míří ve směru osy z.

2. Následuje 90° pulz označený obdélníkem. Cívka obklopující vzorek je připojena na výstup vysokofrekvenčního zdroje (vysílače) a po dobu pulzu jí protéká proud s frekvencí, kterou nazýváme frekvence pulzu. Pulz vytvoří po dobu svého trvání další magnetické pole, které osciluje právě s frekvencí pulzu. Frekvence pulzu bývá uprostřed oblasti rezonančních frekvencí sledovaného jádra. Fáze pulzu se uvádí ve schématu sekvence do závorky a v našem případě je taková, že pole *B*₁ směřuje ve směru osy *y* (obrázek 3.2). Celková magnetizace začne v rotujícím systému vlivem pole *B*₁ rotovat okolo osy *y*. 90° Pulz má právě takovou intenzitu a délku, aby jím vytvořené pole stihlo sklopit magnetizaci do směru osy *x*. Pulz je tak krátký, že se téměř neuplatní rozdíl frekvencí jednotlivých magnetizací, v rotujícím systému souřadném směřují obě magnetizace (M_{CHCI3} a M_{CH2CI2}) po 90° pulzu ve směru osy *x*. Po 90° pulzu všechny spiny a tedy i jednotlivé magnetizace M dále rotují kolem osy *z* se svojí Larmorovou frekvencí.

3. Snímání dat (akvizice), které se graficky označuje trojúhelníkem. Jednotlivé magnetizace (M_{CHCI3} a M_{CH2CI2}) nyní vlivem hlavního magnetického pole rotují okolo osy z se svými frekvencemi. Zároveň se spiny vracejí do rovnovážného stavu, tj. dochází k postupnému obnovování nadbytku spinů na nižší energetické hladině. V rotujícím modelu je tento děj vyjádřen tak, že šipky představující jednotlivé vektory magnetizace opouštějí rovinu *xy* a po spirále se vracejí do směru osy z. V průmětu do roviny *xy* můžeme během akvizice pozorovat dva rotující vektory magnetizace, jejichž velikost postupně klesá.

Elektromagnetické pole vytvářené rotujícími magnetickými momenty jader indukuje v měřící cívce elektrický proud. Cívka je orientovanou tak, že zaznamenává složky vektorů magnetizace promítající se do roviny *xy*. Obvykle se pomocí tzv. **kvadraturní detekce** nezávisle detegují složky v osách *x* a *y* (reálná a imaginární složka komplexního signálu FIDu). Jednotlivé magnetizace přispějí do FIDu sinusoidami s odpovídajícími frekvencemi. FID odpovídá součtu těchto sinusoid, má komplikovaný průběh a odráží časový průběh celkové magnetizace vzorku, tedy vektorového součtu všech dílčích

magnetizací. S přibližováním vektorů rovnovážnému stavu intenzita FIDu klesá (zvětšuje se složka ve směru osy *z*, průmět do roviny *xy* se blíží k nule).

Obrázek 3.2. Chování magnetizací během jednopulzní sekvence. Nahoře je celkový stav a dole průmět do roviny *xy*. Jednotlivé tučné šipky představují magnetizace, na kterých se podílejí spiny, které rotují se stejnou frekvencí.

Jednoduchou kombinaci pulzních elementů představuje tzv. **spinové echo** (obrázek 3.3). Používá se v řadě pulzních sekvencí buď k refokusaci chemických posunů a heteronukleárních interakčních konstant a nebo k fázové modulaci homonukleárních interakčních konstant a také pro měření relaxačních časů T_2 . Tato sekvence začíná prodlevou d_1 , během níž se v systému ustanoví rovnovážný stav. Poté následuje 90° pulz, který sklopí magnetizaci z osy z do roviny xy (pokud je 90° pulz podél osy y, magnetizace se sklopí do osy x). Během doby τ vykonává magnetizace precesní pohyb kolem osy z se svojí Larmorovou frekvencí. Za dobu τ se magnetizace otočí o úhel ϕ . Poté následuje 180° pulz podél osy x, který ponechá magnetizaci v rovině xy, ale překlopí ji na druhou stranu osy x. Během druhé doby τ vykonává magnetizace opět precesní pohyb kolem osy z s Larmorovou frekvencí. Za dobu τ se magnetizace otočí o stejný úhel ϕ a tím pádem se vrátí opět do osy x, ale její intenzita je snížena kvůli relaxaci, ke které došlo v průběhu této pulzní sekvence (kapitola 4.2). Čím je doba τ delší, tím je výsledná magnetizace v ose x menší.

Refokusace chemických posunů pomocí spinového echa může být využita k eliminaci vlivů nehomogenity magnetického pole B_0 , jejíž princip ukazuje obrázek 3.4. První 90° pulz ve směru osy *y* otočí makroskopickou magnetizaci jader z osy *z* do osy *x*. Vlivem nehomogenity pole se pak vektory jednotlivých jaderných spinů budou pohybovat různou rychlostí (jiné magnetické pole v různých částech NMR kyvety vede k různým rezonančním frekvencím ekvivalentních jader), což povede k poklesu celkové magnetizace (vektorový součet všech příspěvků) v rovině *xy*. Následující 180° pulz otočí vektory jaderných spinů kolem osy *x*. Po druhém intervalu τ pak dojde k refokusaci vektorů do směru *x*. Stejným způsobem vede spinové echo k refokusaci signálů neekvivalentních jader. Jednotlivé vektory magnetizace vykonávají Larmorovu precesi s frekvencí odpovídající jejich rezonanční podmínce a postupně se tedy během prodlev v pulzních sekvence lze zajistit, aby v okamžiku počátku akvizice (měření FIDu) všechny vektory magnetizace směřovaly podél osy *x* a díky tomu měly všechny signály ve spektru stejnou fázi.

Obrázek 3.3. Pulzní sekvence spinové echo a její vliv na jednospinový systém.

Obrázek 3.4. Refokusace nehomogenit magnetického pole nebo neekvivalentních signálů v průběhu spinového echa.

Pokud aplikujeme pulzní sekvenci spinového echa na jeden typ jader v systému s heteronukleární spin-spinovou interakcí (například na uhlíková jádra v chloroformu ¹³CHCl₃, v ¹³C spektru bez dekaplinku bychom pozorovali dublet, musíme tedy uvažovat dva vektory magnetizace), po druhé prodlevě τ dojde opět k refokusaci vektorů magnetizace jednotlivých složek multipletu, jak je znázorněno na obrázku 3.5. Po druhé prodlevě τ směřují oba vektory magnetizace uhlíku ¹³C podél osy *x*. Pokud bychom v tuto chvíli zapnuli dekaplink ve vodíkovém kanále a začali snímat FID v uhlíkovém kanále, ve výsledném ¹³C spektru by byl jeden singlet. Pokud bychom snímali FID bez dekaplinku vodíků, pozorovali bychom ve spektru dublet.

Obrázek 3.5. Refokusace heteronukleárních C–H spin-spinových interakcí v průběhu spinového echa aplikovaného na uhlíková jádra chloroformu.

Poněkud odlišný výsledek získáme pokud při 180° pulzu v uhlíkovém kanálu zároveň aplikujeme

180° pulz i ve vodíkovém kanálu (obrázek 3.6). Výměna spinových stavů jader vodíku způsobí "přeznačení" vektorů jader uhlíku a změnu směru jejich rotace, takže v průběhu druhé doby τ nedochází k jejich refokusaci, ale dalšímu rozfázování. V příkladu zobrazeném na obrázku 3.6 byla doba τ nastavena tak, že na konci této pulzní sekvence směřují jednotlivé vektory ¹³C magnetizace opačným směrem. Pokud bychom v tuto chvíli zahájili snímání ¹³C FIDu s ¹H dekaplinkem, ve spektru by nebyl žádný signál, protože vektorový součet obou složek magnetizace je nulový. Pokud bychom snímali ¹³C FID bez dekaplinku, ve spektru by byly dvě linie s opačnou fází. Jiným nastavením prodlevy τ lze dosáhnout jiných fázových vztahů mezi jednotlivými složkami magnetizace.

Obrázek 3.6. Modifikované spinové echo se 180° pulzem aplikovaným zároveň v uhlíkovém i vodíkovém kanále a vývoj ¹³C spinového systému v průběhu této sekvence.

Na rozdíl od heteronukleárních interakcí nedochází během spinového echa k refokusaci homonukleárních spin-spinových interakcí, protože 180° pulz má za následek jednak otočení jednotlivých vektorů magnetizace o 180° ale zároveň i jejich "přeznačení", které vede k tomu, že se rychlost rotace jednotlivých vektorů po 180° pulzu změní a vektory se tak v průběhu druhé doby τ dále rozfázovávají.

Rutinní ¹³C NMR spektra jsou měřena s širokopásmovým dekaplinkem vodíků (obrázek 3.7). Tím je dosaženo výrazného zvýšení citlivosti ze dvou důvodů: (a) eliminací všech skalárních interakcí J(C,H) pozorujeme všechny uhlíkové atomy jako singlety, (b) nukleární Overhauserův efekt (NOE, kapitola 5) může zvýšit intenzity signálů až 3x. To je však provázeno: (a) kompletní ztrátou informace obsažené v J(C,H) (nelze přímo rozlišit signály CH₃, CH₂, CH a C), (b) zkreslením intenzit signálů (nekvantitativní poměry intenzit signálů spektra). Dalším důvodem, proč v běžných ¹³C spektrech neodpovídají intenzity signálů počtu jednotlivých uhlíkových jader jsou různě dlouhé relaxační doby jednotlivých uhlíkových jader. Během doby d_1 často nedojde k úplné relaxaci všech magnetizací a další průběh pulzní sekvencí tak nevychází z rovnovážného stavu.

Obrázek 3.7. Základní pulzní sekvence pro měření ¹³C spekter s vodíkovým dekaplinkem.

Pro získání **kvantitativních** ¹³**C NMR spekter** s dekaplinkem protonů (obrázek 3.8) je třeba použít dostatečně dlouhou dobu d_1 , aby i uhlíky s dlouhými T_1 stačily zrelaxovat, a minimalizovat NOE (dekapler je zapnut pouze během akviziční doby). Pro zkrácení relaxačních časů substrátu lze přidat relaxační činidlo, například acetylacetonát chromitý (Cr(acac)₃).

Obrázek 3.8. Pulzní sekvence pro měření kvantitativních ¹³C spekter.

¹³C NMR spektra, obsahující štěpení všemi interakcemi *J*(C,H) ("**nedekaplovaná** ¹³C NMR spektra"), lze získat buď kompletním vyřazením dekaplinku vodíků anebo efektivněji metodou přerušovaného dekaplinku (obrázek 3.9). V druhém případě je dekapler zapnut pouze v době mimo akvizici tak, aby mohlo dojít k ustavení NOE (a tudíž nárůstu intenzity signálů). Uhlíkové signály jsou štěpeny velkými interakcemi ¹*J*(C,H) ~120 - 200 Hz na dublety (CH), triplety (CH₂) či kvartety (CH₃), které obvykle obsahují další štěpení skalárními interakcemi *J*(C,H) přes dvě a více vazeb. Překryv multipletů, širokých často několik ppm, může ale značně komplikovat interpretaci spekter.

K přiřazení jednotlivých heteronukleárních interakcí *J*(C,H), pozorovaných v nedekaplovaném ¹³C NMR spektru, je možno použít selektivní heteronukleární dekaplink. Během akvizice je selektivně ozařován signál zvoleného vodíku, což vede k eliminaci jeho interakcí s uhlíky v ¹³C NMR spektru. Pro zvýšení citlivosti je výhodné, aby během relaxační prodlevy *d*₁ byl zapnut širokopásmový dekapler.

Obrázek 3.9. Pulzní sekvence pro měření nedekaplovaných ¹³C spekter.

Klasifikace ¹³C signálů podle počtu přímo vázaných vodíků se běžně provádí pomocí experimentů, kde signály ve výsledném spektru jsou buď pozitivní nebo negativní podle typu uhlíku (C, CH, CH₂, CH₃). Nejjednodušší experiment tohoto typu je *J*-modulované spinové echo (obrázek 3.10). Představme si nyní dva signály uhlíku: kvarterního a a terciárního b. První bude mít v uhlíkovém spektru měřeném bez dekaplinku protonů jednu linii, druhý dvě linie \mathbf{b}_1 a \mathbf{b}_2 způsobené štěpením navázaným atomem ¹H s interakční konstantou např. J_{C-H} = 140 Hz. Prodleva τ je nastavena na dobu $1/^{1}J_{C-H}$, což odpovídá přibližně 7 ms. Po prvním pulzu začnou jednotlivé magnetizace rotovat v rovině xy s jejich Larmorovou frekvencí. Dekaplink je vypnut, uplatní se interakce s protony. Magnetizace uhlíku a urazí za 7 ms úhel odpovídající jeho chemickému posunu (například na obrázku 10 je to 45°). Složky magnetizace \mathbf{b}_1 a \mathbf{b}_2 vykonávají precesní pohyb daný chemickým posunem signálu \mathbf{b} a interakční konstantou ${}^{1}J_{C-H}$. Pokud je doba τ nastavena přesně na převrácenou hodnotu této interakční konstanty, jedna složka magnetizace provede právě o jednu otočku kolem osy z více než druhá složka (například na obrázku 3.10 urazila magnetizace \mathbf{b}_1 asi 120° a magnetizace \mathbf{b}_2 asi 130° + 360° = 490°). Následuje 180° pulz podél osy x. Zároveň s ním je zapnut dekaplink. Od této chvíle až po konec pulzní sekvence je tedy eliminován vliv interakcí s protony. Po skončení pulzu složka a pokračuje normálně v rotaci a po 7 ms se dostane do své výchozí pozice - míří v kladném směru osy x. Složky \mathbf{b}_1 a \mathbf{b}_2 po zapnutí dekaplinku rotují kolem osy z stejnou úhlovou rychlostí odpovídající chemickému posunu uhlíku b. Protože se od této chvíle pohybují stejnou úhlovou rychlostí, můžeme dále uvažovat jejich vektorový součet **b**. Magnetizace **b** urazí za druhou dobu τ úhel, který je průměrem úhlů uražených složkami \mathbf{b}_1 a \mathbf{b}_2 za první dobu τ (na obrázku 3.10 magnetizace \mathbf{b} urazí za druhou dobu τ (490°+130°)/2 = 310°) a dostane se tak do poloosy -x vedoucí ve spektru k signálu s fází opačnou, než má signál uhlíku a. Podobný rozbor pro sekundární uhlíky ukazuje, že všechny tři složky původního tripletu jsou v tuto chvíli orientovány ve směru poloosy +x a složky primárního uhlíku (tvoří kvartet) ve směru poloosy -x.

Mírnou obměnou *J*-modulovaného spinového echa získáme pulzní sekvenci APT (Attached Proton Test). První pulz v této sekvenci není 90°, ale kratší, používá se například hodnota 30°. Takový pulz nesklopí magnetizaci až do roviny *xy* a vývoj systému probíhá nad touto rovinu, v rovině s ní rovnoběžné (obrázek 3.11). Následující 180° pulz otočí magnetizace pod rovinu *xy*, odtud by návrat zpět do rovnováhy po skončení akvizice trval dlouho, proto se zařazuje ještě jeden 180° pulz (druhé spinové echo), který vrátí magnetizaci zpět nad rovinu *xy*, odkud je návrat do rovnovážného stavu podstatně kratší a lze tedy zkrátit přípravnou dobu d_1 .

Obrázek 3.10. Pulzní sekvence *J*-modulovaného spinového echa a její vliv na magnetizaci kvartérního a terciárního uhlíku.

Velikost interakční konstanty ${}^{1}J_{C-H}$ závisí především na hybridizaci uhlíkového atomu, u sp³ uhlíků se pohybuje kolem 125 Hz, u sp² uhlíků kolem 165 Hz a u sp uhlíků kolem 250 Hz. Ve standardním nastavení *J*-modulovaného echa se vychází z kompromisní hodnoty ${}^{1}J_{C-H}$ pro sp² a sp³ uhlíky – 145 Hz, což vede k prodlevě τ o délce asi 7 ms. Pokud jsou ovšem v měřené molekule vyšší heteronukleární interakce (například u terminálních alkynů nebo u některých heteroaromatických sloučenin), toto standardní nastavení prodlevy τ vede k nízké nebo nulové intenzitě výsledných CH signálů ve spektru, případně k CH signálům s kladnou intenzitou. Proto je při zkoumání těchto látek nutné vhodně adjustovat délku prodlevy τ , viz obrázek 3.12.

Obrázek 3.11. Pulzní sekvence APT.

Obrázek 3.12. Vliv doby τ na APT spektra purinového derivátu. Standardní nastavení doby τ (7 ms) vede k potlačené intenzitě signálu C2 a C8. Je tedy vhodné dobu τ zkrátit na asi 6 ms.

Častým elementem pulzních sekvencí je také **přenos polarizace**, související se změnami populací jaderných spinových stavů. Princip přenosu polarizace na jednoduchém dvouspinovém heteronukleárním systému jader ¹H a ¹³C (například v molekule ¹³CHCl₃) je ukázán na obrázku 3.13. Gyromagnetický poměr jader ¹H je přibližně čtyřikrát větší než jader ¹³C. Energetický rozdíl mezi spinovým stavem α a β a také rozdíl populací jader s těmito spinovými stavy je také přibližně čtyřikrát větší v případě jader ¹H. Rozdíl populací mezi spinovými stavy α a β na obrázku 3.13 je značně přehnaný; při běžně používaných magnetických polích je rozdíl energetických hladin a tedy i rozdíl populací velmi malý (viz kapitola 2.1). Pokud NMR experiment tohoto dvouspinového systému bude začínat z tepelné rovnováhy, v ¹H i ¹³C spektru budeme pozorovat dublet, v ¹H spektru bude ale intenzita čar přibližně čtyřikrát vyšší. Pokud by mezi vodíkovými a uhlíkovými jádry neexistovala spinspinová interakce, energetický rozdíl odpovídající přechodům H^a a H^b i přechodům C^a a C^b by byl stejný a tedy i rezonanční frekvence by byla stejná a v uhlíkovém i vodíkovém spektru bychom pozorovali pouze jednu čáru (singlet).

Obrázek 3.13. Populace spinových stavů a přenos polarizace.

Pokud provedeme selektivní inverzi populace odpovídající jednomu vodíkovému přechodu (například H^a, pomocí selektivního 180° pulzu), dojde ke změnám ve vodíkovém i uhlíkovém spektru. Ve vodíkovém spektru bude mít čára H^a negativní intenzitu. V uhlíkovém spektru bude mít jedna čára (C^a) intenzitu -3 a druhá (C^b) +5. Pokud bychom provedli selektivní inverzi druhého vodíkového přechodu, situace by byla opačná, uhlíková linie C^a by měla intenzitu +5 a C^b intenzitu -3. Dále si můžeme představit, že bychom výsledná uhlíková spektra získaná po selektivní inverzi vodíkoého přechodu H^a a H^b od sebe odečetli. Výsledné uhlíkové spektrum by mělo intenzitu čar -8 (= -3 – 5) a +8 (=+5-(-3)). Po dvou průchodech jednoduchou pulzní sekvencí se selektivní manipulací vodíkových přechodů tak získáme spektrum, ve kterém je intenzita uhlíkových čar čtyřikrát vyšší než by odpovídalo dvěma průchodům klasickou jednopulzní sekvencí. Při tomto experimentu došlo k přenosu polarizace z jader ¹H na jádra ¹³C (větší rozdíl populací spinových stavů vodíku znamená větší polarizaci). Nárůst citlivosti heterojádra X (např. ¹³C) závisí na poměru gyromagnetických poměrů vodíku a měřeného jádra (γ_H / γ_X) a je obecně vyšší než nárůst intenzity signálů způsobený nukleárním Overhauserovým efektem (NOE, viz kapitola 5). Maximální nárůst intenzity signálů heterojader pomocí NOE a pomocí přenosu polarizace je uveden v tabulce 3.1. Nevýhodou výše popsaného experimentu je ovšem nutnost použití selektivních pulzů s frekvencí přesně odpovídající jedné konkrétní linii ve vodíkovém spektru.

Tabulka 3.1. Maximální nárůst intenzity NMR signálu pomocí NOE a pomocí přenosu polarizace z jader ¹H na vybraná heterojádra.

Jádro	NOE	Přenos polarizace
³¹ P	2.24	2.47
¹³ C	2.99	3.98
²⁹ Si	-1.52	5.03
¹⁵ N	-3.94	9.87

Pulzní sekvence INEPT (Insensitive Nuclei Enhancement by Polarisation Transfer) je také založena na přenosu polarizace z vodíkových jader na heterojádra, není ale nutné používat selektivní pulzy. Tato pulzní sekvence opět využívá modifikovaného spinového echa, ve které je doba τ nastavena na dobu odpovídající $1/4J_{CH}$ (obrázek 3.14). Zárovň se 180° pulzem ve vodíkovém kanále je aplikován 180° pulz i na heterojádro, nedochází tedy k refokusaci jednotlivých složek vodíkové magnetizace a po druhé době τ jsou tyto složky magnetizace podél osy + a –y. V tuto chvíli je aplikován na vodíková jádra 90° pulz podél osy x, jehož výsledkem je otočení vodíkové magnetizace do kladné a záporné poloosy z, což odpovídá selektivní inverzi jedné vodíkové linie a tedy přenosu polarizace z vodíků na hterojádra. Ve stejnou dobu je aplikován 90° pulz i na heterojádra, jejich magntizace se tak sklopí do roviny xy a může začít měření FIDu. Jak bylo uvedeno výše, můžeme pulzní sekvenci INEPT zopakovat, ale druhý devadesátistupňový pulz ve vodíkovém kanále provést s opačnou fází (rotace kolem osy -x místo kolem osy x), tím dojde k selektivní inverzi druhé vodíkové linie. Pokud výsledná uhlíková spektra od sebe odečteme, získáme spektrum s intenzitou linií dubletu -- 8 a +8. Metodě opakovaného procházení pulzní sekvencí s rozdílnými fázemi pulzů se říká cyklování fází. Komplexnější varianty experimentu INEPT vedou k refokusaci dubletu a přítomnosti pouze kladných singletů ve výsledném uhlíkovém spektru.

Obrázek 3.14. Pulzní sekvence INEPT a její vliv vodíkovou magnetizaci v C–H spinovém systému.

Jinou pulzní technikou pro měření ¹³C jader je DEPT (Distorsionless Enhancement by Polarization Transfer, obrázek 3.15). Její výhodou (ve srovnání s INEPT experimentem) je kratší pulzní sekvence, takže během evoluční doby nedochází k tak velké ztrátě signálu relaxací. Takzvaná editace spekter umožňuje získat DEPT spektra obsahující pouze CH, CH₂ nebo CH₃ signály. To ale vyžaduje provést tři různé experimenty lišící se délkou posledního pulzu ve vodíkovém kanálu (p3 = 45°, 90° a 135°). Vliv délky pulzu p3 na intenzity jednotlivých typů uhlíkových jader je zobrazen na obrázku 3.16. Ve spektera měřeném s p3 = 90° pozorujeme pouze signály CH uhlíků. Spektrum CH₂ uhlíků získáme odečtením subspekter s p3 = 45° a p3 = 135°. Spektrum CH₃ uhlíků získáme tak, že sečteme spektra s p3 = 45° a p3 = 135° a od tohoto součtu odečteme 1,414 násobek spektra s p3 = 90°. Signály kvarterních uhlíků jsou v DEPT spektrech potlačeny, proto musí být experiment DEPT ještě doplněn běžným ¹³C experimentem s vodíkovým dekaplinkem, kde pozorujeme signály všech uhlíků.

Obrázek 3.15. Pulzní sekvence DEPT.

Obrázek 3.16. Závislost intenzity uhlíkových atomů v DEPT spektru na délce sklápěcího pulzu p3. Čárkované čáry označují běžně používané sklápěcí úhly 45°, 90° a 135°.

3.2 2D pulzní sekvence

Už u poměrně malých molekul může v 1D NMR spektrech (hlavně vodíkových) docházet

k překryvu signálů, který ztěžuje nebo znemožňuje interpretaci těchto spekter. Zavedení druhé dimenze do NMR spekter umožňuje tento problém obejít – ve 2D spektrech je překryv signálů méně pravděpodobný. Navíc pulzní NMR techniky jsou schopny manipulovat se spinovým systémem takovým způsobem, že se ve výsledném 2D spektru objeví pro strukturní analýzu velmi cenné nové informace, které z běžných 1D experimentů není možné získat. Například pomocí C–H korelovaných spekter můžeme přímo zjistit spojení uhlíkových a vodíkových atomů v molekule chemickými vazbami.

V 1D NMR experimentech je FID funkcí jediné časové proměnné a spektrum získané Fourierovou transformací je funkcí frekvence. Pro 2D NMR experimenty je charakteristické zavedení další časové proměnné (evoluční doby). Detekovaný signál potom závisí na tom, co se odehrálo se spinovým systémem během evoluční doby. Systematickou změnou evoluční doby (například její délky o inkrement Δt_1) se v detekční době získá série FIDů, jejichž Fourierova transformace poskytne sérii jednorozměrných spekter. Druhá Fourierova transformace poskytne druhou frekvenční dimenzi (F_1) pro 2D-NMR spektrum. Evoluční doba se tradičně označuje jako doba t_1 a detekční doba jako t_2 . Dvojnásobnou Fourierova transformací série FIDů získáme 2D spektrum, které má dvě frekvenční osy (F_1 a F_2).

2D NMR experimenty lze rozdělit na **korelované** a **rozlišené**. Ve 2D spektrech získaných z korelovaných experimentů jsou na obou frekvenčních osách (F_1 i F_2) chemické posuny; u homonukleárních korelovaných experimentů jsou to posuny téhož izotopu (například ¹H), u heteronukleárních korelovaných experimentů jsou pak na každé ose chemické posuny jiného izotopu (například ¹H a ¹³C). V případě heteronukleárních korelovaných experimentů říkáme, že jádro, jehož chemické posuny pozorujeme na ose F_2 , je **přímo detekované** (chemické posuny tohoto jádra jsou získány Fourierovou transformací FIDů) a chemické posuny na ose F_1 patří **nepřímo detekovanému** jádru. Ve 2D spektrech získaných z rozlišených experimentů jsou na jedné frekvenční ose (F_2) chemické posuny a na druhé ose (F_1) skalární interakční konstanty. U homonukleárních rozlišených experimentů získáme spektrum, kde interakční konstanty na ose F_2 (například osa F_2 – chemické posuny ¹H, osa F_1 – interakční konstanty ¹H–¹H). Ve spektrech získaných z heteronukleárních rozlišených experimentů pozorujeme na ose F_1 heteronukleární interakční konstanty (například osa F_2 – chemické posuny ¹³C, osa F_1 – interakční konsatnty ¹H–¹³C).

Jako příklad 2D experimentu, na kterém lze dobře demonstrovat princip dvoudimenzionálních NMR metod použijeme heteronukleární rozlišený experiment. Jeho pulzní sekvence je znázorněna na obrázku 3.17, kde jsou schematicky znázorněny tři inkrementy (tři jednodimenzionální experimenty) s postupně se prodlužující dobou t_1 . Základem této pulzní sekvence je spinové echo s dekaplinkem vodíků pouze v části sekvence (podobně jako u experimentu APT). Na obrázku 3.17 vpravo je zobrazen vývoj uhlíkového spinového systému molekuly ¹³C¹HCl₃. Po 90° pulzu je magnetizace uhlíkových jader v rovině *xy*, kde se během první doby $t_1 / 2$ její dvě složky rozjíždí díky spin-spinové interakci s vodíkem (v tuto chvíli není zapnut dekaplink). Po 180° pulzu je zapnut dekaplink a místo dvou vektorů magnetizace tedy pozorujeme pouze jeden, jehož precesní frekvence odpovídá průměru původních dvou složek magnetizace. Pokud je doba $t_1 / 2$ nulová, jednotlivé složky magnetizace se nerozjedou a na konci pulzní sekvence dostaneme signál s maximální intenzitou. Pokud doba $t_1 / 2$ není nulová, intenzita signálu na konci pulzní sekvence závisí na tom, jak se jednotlivé vektory magnetizace rozjedou v průběhu první doby $t_1 / 2$. To je dáno délkou této prodlevy a velikostí C–H spin-spinové interakce (obrázek 3.18). Například pokud je doba $t_1 / 2$ rovna jedné

složky magnetizace se rozjedou právě o 180° a jejich vektorový součet po zapnutí dekaplinku je nula. Pokud vyneseme závislost intenzity uhlíkového signálu na době t_1 , získáme periodickou funkci. Pokud provedeme Fourierovu transformaci této funkce, získáme frekvenci odpovídající interakční konstantě ${}^{1}J_{C-H}$ (přesněji řečeno této konstantě vynásobené faktorem ¼, tento faktor se ale snadno odstraní při zpracování spekter). U typických 2D NMR experimentů se měří řádově stovky inkrementů, tedy jednodimenzionálních experimentů s měnící se evoluční dobou.

Obrázek 3.17. Vlevo: Schematické znázornění tří inkrementů pulzní sekvence pro měření 2D heteronukleárních rozlišených spekter a vpravo: vývoj uhlíkové magnetizace u ¹³C–¹H spinového systému v průběhu této pulzní sekvence.

Obrázek 3.18. Závislost intenzity ¹³C signálu na době t_1 v heteronuklárním rozlišeném experimentu ukázaném na Obrázku 3.17.

Spektrální rozlišení v přímo detekované dimenzi (F_2) je dáno rozlišením v 1D spektrech získaných v průběhu 2D experimentu. Rozlišení v nepřímo detekované dimenzi (F_1) je dáno počtem inkrementů.

Podobně jako 1D NMR spektra jsou vlastně "dvourozměrná" (druhou dimenzí je intenzita) mají i

2D NMR spektra další "třetí" dimenzi (intenzitu). Jejich grafická prezentace tudíž vyžaduje redukci jedné dimenze některým z následujících způsobů: **Perspektivní zobrazení** obsahuje kompletní intenzitní informaci, ale jeho interpretace je obtížná (perspektivní distorze, nebezpečí překryvu signálů). Nejběžnějším způsobem zobrazení je **vrstevnicové zobrazení**, které odpovídá (podobně jako vrstevnicové mapy) řezům třírozměrným spektrem v rovinách rovnoběžných s rovinou F_1 , F_2 v několika různých výškách (obrázek 3.19). Volba nejnižší hladiny a počet hladin určují jaká část intenzitní informace bude ve spektru zachována. Výhodou vrstevnicových spekter je jejich přehlednost a snadná interpretace. V případě potřeby je možno zobrazit a vypsat řez 2D spektrem v kterémkoliv vhodném místě, popřípadě **projekci 2D spektra** do osy F_1 nebo F_2 . Jiným způsobem zobrazení 2D spekter je použití škály barev, kde konkrétní odstín odpovídá určité intenzitě signálu.

Obrázek 3.19. Perspektivní (vlevo) a vrstevnicové (vpravo) zobrazení 2D spektra.

Inverzní techniky spočívají v přímé detekci jádra s velkou citlivostí (¹H), zatímco jádra s nízkou citlivostí (¹³C, ¹⁵N) jsou detekována nepřímo, tedy informace o těchto jádrech je nějakým způsobem zakódována v jednotlivých FIDech přímo detekovaného jádra. Při měření se používá tzv. inverzního uspořádání vysokofrekvenčních tras - měřící trasa je nastavena na detekci ¹H a dekaplovací trasa naladěna na kmitočet jádra s nízkou citlivostí. Rozvoj inverzních experimentů tak úzce souvisí s rozvojem NMR sond. V tradičním uspořádání NMR sond je cívka určená pro detekci méně citlivého jádra co nejblíže měřenému vzorku a cívka pro dekaplink a detekci vodíkových jader je až o něco dále (citlivost jader ¹H je natolik dobrá, že ztráta části signálu v tomto uspořádání nehraje zásadní roli). Naopak u **inverzních sond** (sond s inverzním uspořádáním tras) je cívka pro detekci jader ¹H co nejblíže vzorku, aby se maximalizovala citlivost inverzních experimentů. Druhá cívka musí umožňovat dekaplink nepřímo detekovaných jader.

Moderní NMR experimenty často v průběhu pulzní sekvence používají gradienty magnetického pole. Použití gradientů umožňuje vybírat informaci, která je zakódovaná ve výsledném spektru, a odstranit nežádoucí informace (například v heteronukleárních C–H experimentech informaci o vodíkových atomech navázaných na magneticky neaktivní izotop ¹²C).

Následující přehled ukazuje nejběžnější typy 2D NMR experimentů. Většina z těchto experimentů má celou řadu dalších variant, které modifikacemi příslušných pulzních sekvencí umožňují získat nebo potlačit některé další informace o studovaném spinovém systému. V následujícím přehledu jsou 2D NMR techniky seřazeny podle typu informace, kterou lze ze spekter získat, ne podle historického vývoje nebo typu pulzní sekvence. Variabilitu pulzních sekvencí lze demonstrovat na H–C heteronukleárním korelovaném experimentu, který umožňuje přiřadit signály na sebe navázaných

vodíkových a uhlíkových atomů. Původní experiment s přímou detekcí uhlíků se nazývá C,H-COSY nebo HETCOR, inverzní varianta tohoto experimentu se nazývá HMQC, jiná inverzní pulzní sekvence vedoucí k téže informaci ve spektru se nazývá **HSQC** (Heteronuclear Single Quantum Correlation). Moderní verze HSQC experimentu obsahují navíc gradientové pulzy. Další varianty tohoto experimentu mohou obsahovat kladné nebo záporné signály podle počtu vodíkových atomů navázaných na daný uhlíkový atom. Volba pulzní sekvence závisí na preferencích operátora a na konkrétním studovaném problému. Inverzní techniky jsou mnohem citlivější než neinverzní, proto jsou obecně mnohem více používané. Méně citlivý neinverzní HETCOR můžeme zvolit například v případě, když jsou uhlíkové signály velmi blízko sebe a pro dostatečné rozlišení uhlíkové dimenze (*F*₁) v inverzním experimentu bychom museli použít velmi vysoký počet inkrementů. Příklad HSQC spektra 2-nitroanilinu je na obrázku 3.20.

Obrázek 3.20. HSQC spektrum 2-nitroanilinu. Krospíky spojují signály na sebe navázaných uhlíkových a vodíkových atomů. Vodíky NH₂ skupiny nemají žádný krospík, protože nejsou přímo navázany na uhlík ale na dusík. Stejně tak kvartérní uhlíkové atomy C1 a C2 nemají žádný krospík, protože na nich není navázaný žádný vodík. Pro přehlednost jsou v obrázku též zobrazena 1D ¹H a ¹³C APT spektra.

Pro získání H–C korelací přes dvě a více vazeb lze použít **HMBC** experiment (Heteronuclear Multiple Bond Correlation). Intenzita krospíku se řídí velikostí heteronukleární C–H interakce; nejčastěji pozorujeme korelace přes dvě nebo tři vazby. Z velikosti krospíku ale není možné zjistit, kolik vazeb je mezi interagujícími atomy. Například u derivátů benzenu bývají heteronukleární skalární interakce přes dvě vazby menší než přes tři vazby. Na obrázku 3.21 je HMBC spektrum 2nitroanilinu. Npříklad vodík H3 má v tomto spektru dva intenzivní krospíky s uhlíky C1 a C5 (oba přes tři vazby) a jeden málo intenzivní krospík s uhlíkem C2 (přes dvě vazby), krospík s uhlíkem C4 nepozorujeme vůbec. Podobně můžeme v tomto spektru pozorovat intenzivní krospíky přes tři vazby H5–C3, H5-C1, H6–C4, H6-C2, H4-C6 a H4-C2. V HMBC spektrech lze pozorovat i interakce vodíků, které nejsou přímo navázány na uhlík; například ve spektru 2-nitroanilinu pozorujeme krospík mezi NH₂ vodíky a uhlíkem C2 a C6 (oba odpovídají interakci přes tři vazby). V některých případech je možné v HMBC spektrech pozorovat i korelace přes čtyři a více vazeb. V HMBC spektrech se často můžeme setkat s takzvanými HSQC artefakty (na obrázku 3.21 zvýrazněny barevnými kroužky). Tyto artefakty vždy vypadají jako dublet a střed tohoto dubletu by odpovídal krospíku mezi přímo navázaným vodíkem a uhlíkem (například H3–C3).

Obrázek 3.21. HMBC spektrum 2-nitroanilinu. Krospíky spojují signály uhlíkových a vodíkových atomů mezi nimiž jsou 2–3 chemické vazby. Barevnými kroužky jsou označeny HSQC artefakty.

Mezi atraktivní, ale zároveň i na čas a množství vzorku nejnáročnější metody, patří **2D**-**INADEQUATE** (obrázek 3.22). Tato metoda umožňuje korelovat přímo vázané uhlíky a tak určovat uhlíkový skelet. Kvůli nízkému izotopovému zastoupení uhlíku ¹³C (cca 1%, ¹³C–¹³C pár tedy pouze v 0.01% případů) je tato metoda velmi málo citlivá a vyžaduje značné množství vzorku (řádově desítky až stovky mg). Obrázek 3.22 ukazuje INADEQUATE spektrum 2-nitroanilinu.

Obrázek 3.22. 2D-INADEQUATE spektrum 2-nitroanilinu s naznačeným přiřazením signálů, pomocí kterých lze určit C–C vazby v uhlíkovém skeletu molekuly. Pro přehlednost je v obrázku též zobrazeno 1D ¹³C APT spektrum.

Jednou z nejdůležitějších a nejdéle a nejčastěji používaných 2D-NMR technik je homonukleární korelované ¹H-¹H **COSY** (COrelation SpectroscopY). Základní verze pulzní sekvence tohoto experimentu obsahuje pouze dva 90° pulzy oddělené evoluční dobou *t*₁. Spektrum má v obou frekvenčních dimenzích chemické posuny vodíků. COSY spektrum je symetrické podle diagonály a objevují se v něm dva typy signálů: **diagonální signály** reprezentují původní 1D spektrum (nepřináší tedy žádnou informaci navíc proti 1D spektru) a **mimodiagonální signály ("krospíky")**, které indikují skalární interakci mezi jádry (Obrázek 3.23). Interagující partnery lze nalézt pomocí horizontální a vertikální čáry vycházející z krospíku a protínající diagonálu. Vzhledem k symetrii spektra podle diagonály lze tuto proceduru provést v levém horním anebo pravém dolním trojúhelníku.

Obrázek 3.23. COSY spectrum 2-nitroanilinu s naznačeným postupem přiřazení signálů. Spektrum je symetrické podle diagonály naznačené černou přerušovanou čarou. Ve spektru jsou patrné i málo intenzivní krospíky odpovídající skalárním interakcím přes čtyři vazby (H3–H5 a H4–H6).

Běžný COSY experiment obvykle spolehlivě deteguje interakce $J \ge 2$ Hz. Velmi malé interakce (< 2 Hz) lze prokázat pomocí "long-range COSY" experimentu, pomocí kterého lze často detekovat i takové interakce, které nejsou rozlišeny v 1D spektru.

Odlišný způsob přenosu informace o *J*(H,H) je využíván v **TOCSY** (TOtal Correlation SpectroscopY) (obrázek 3.24). V průběhu této pulzní sekvence se využívá takzvaný spinlock, tedy "uzamčení" vektorů magnetizace v rovině *xy* pomocí magnetického pole vyvolaného rychlým sledem 180° pulzů. Během spinlocku se spinový systém nevyvíjí podle magnetického pole *B*₀ (tedy pole supravodivého magnetu) ale podle magnetického pole, které udržuje vektory magnetizace v rovině *xy*. Během spinlocku je magnetizace postupně přenášena mezi všemi vodíky určitého izolovaného spinového systému. Izolovaným spinovým systémem rozumíme část molekuly, jejíž žádný vodík nemá skalární interakci s žádným vodíkem z jiné části molekuly. Typickým příkladem jsou oligosacharidy nebo oligopeptidy, kde každá monosacharidová nebo aminokyselinová jednotka tvoří jeden izolovaný spinový systém. TOCSY spektrum v ideálním případě obsahuje pro každý vodík krospíky se všemi ostatními vodíky daného spinového systému.

Obrázek 3.24. TOCSY spektrum zobrazeného allyl glycidyl etheru. Všechny vodíky v pozicích 1–3 tvoří jeden spinový systém a všechny vodíky v pozicích 4–6 tvoří druhý spinový systém. V TOCSY spektru vidíme korelace mezi všemi vodíky daného spinového systému. Všimněte si neekvivalence CH₂ vodíků v polohách 1, 3 a 5. Vodíky v těchto polohách jsou diastereotopní (viz kapitola 9.3). Na obrázku 3.25 je pro porovnání zobrazeno COSY spektrum téže sloučeniny.

NOESY a ROESY experimenty jsou další běžně měřené homonukleární korelované 2D experimenty. Krospíky v NOESY a ROESY spektrech nesouvisí se skalární interakcí mezi jádry ale s prostorovou blízkostí jader. Tento typ experimentů je podrobněji probrán v kapitole 5.

Korelované 2D NMR experimenty mají v současné době mnohem větší praktické uplatnění než experimenty rozlišené, jejichž měření je žádoucí pouze ve speciálních případech. Princip vzniku heteronukleárního rozlišeného spektra byl popsán výše, ukázka takového spektra je na obrázku 3.26. Příklad homonukleárního rozlišeného spektra je na obrázku 3.27. Tento experiment umožňuje separovat chemické posuny vodíků v ose F_2 od interakčních konstant J(H,H) v ose F_1 . Projekce do osy F_2 je ekvivalentní ¹H NMR spektru s "kompletním dekaplinkem vodíků" (singlety pro každý H) a řezy rovnoběžné s osou F_1 představují separované multiplety jednotlivých vodíků.

Obrázek 3.26. Heteronukleární rozlišené spektrum allyl glycidyl etheru.

Obrázek 3.27. Část homonukleárního rozlišeného spektra allyl glycidyl etheru. Signály jsou v tomto spektru mírně nakloněné podél osy F_1 (osa interakčních konstant), toto naklonění lze odstranit během zpracování spekter.

4. RELAXACE V NMR SPEKTROSKOPII

Magnetizace směřuje v rovnovážném stavu ve směru osy magnetického pole (osy z). Aplikací elektromagnetických pulzů stáčíme magnetizaci z osy z a jaderný spinový systém je vyveden z rovnováhy. Spinový systém se postupně vrací zpět do rovnovážného stavu a tomuto jevu říkáme relaxace. V NMR spektroskopii se rozlišují dva typy relaxačních dějů: **podélná relaxace** a **příčná relaxace**.

4.1 Podélná relaxace

Během podélné relaxace (spin-mřížkové, longitudální) se znovu buduje rovnovážná magnetizace v ose z. Například v pulzní sekvenci pro měření vodíkových NMR spekter je 90° pulz, který sklopí magnetizaci z osy z do roviny xy. Bezprostředně po tomto pulzu je tedy magnetizace v ose z nulová. Díky podélné relaxaci se znovu vybuduje rovnovážná magnetizace v ose z. Nárůst magnetizace v ose z probíhá podle rovnice

$$M_z = M_0 (1 - e^{-t/T_1})$$

kde M_z je velikost magnetizace v ose z, M_0 je rovnovážná magnetizace, t je čas po 90° pulzu a T_1 je spin mřížkový relaxační čas (obrázek 4.1). Čím je T_1 kratší, tím rychleji je znovu dosaženo rovnovážného stavu. T_1 bývá nejčastěji v řádech stovek milisekund až sekund, ale v některých případech může být i mnohem kratší nebo delší (až několik hodin). Podélná relaxace je také zodpovědná za vybudování magnetizace M_0 po vložení vzorku do magnetického pole. Celková magnetizace vzorku mimo magnetické pole je nulová a po umístění v magnetickém poli se postupně buduje se stejným charakteristickým časem T_1 jako po excitaci spinového systému elektromagnetickými pulzy.

Obrázek 4.1. Vlevo: návrat podélné magnetizace M_Z k rovnovážné hodnotě M_0 po 90° pulzu. Vpravo: návrat podélné magnetizace M_Z k rovnovážné hodnotě M_0 po 180° pulzu.

Alespoň přibližná znalost relaxačního času T_1 je důležitá pro nastavení repetičního času pulzních experimentů. Prodleva d_1 na začátku každého průchodu pulzní sekvencí musí být dostatečně dlouhá, aby spinový systém dosáhl stavu blízkého rovnováze. To nebývá problém při měření vodíkových spekter, protože vodíková jádra mají většinou krátké relaxační časy T_1 . Některá uhlíková jádra (hlavně kvartérních uhlíkových atomů) ale mohou mít relaxační čas T_1 delší a při běžném nastavení repetičního času uhlíkového experimentu (například 3 sekundy) se jejich magnetizace nedostane do rovnovážného stavu. V dalším průchodu pulzní sekvencí je po excitačním pulzu velikost magnetizace v rovině *xy* menší než u plně zrelaxovaných jader a intenzita výsledných signálů ve spektru je tedy nižší. To je jeden z důvodů, proč se běžná uhlíková spektra nedají integrovat (druhýmn důvodem je nukleární Overhauserův efekt – kapitola 5).

Pro měření relaxačních časů T_1 se používá pulzní sekvence **"inversion recovery"** (obrázek 4.2). Tato sekvence obsahuje 180° pulz, který sklopí magnetizaci do osy -z, poté následuje prodleva τ , kterou můžeme měnit. Během prodlevy τ dochází k podélné relaxaci, magnetizace v –z se zmenšuje, prochází nulou a pak se znovu vytváří magnetizace v ose +z. Po prodlevě τ následuje 90° pulz a detekce signálu. Příklad měření uhlíkových relaxačních časů je na obrázku 4.3 a příklad měření vodíkových relaxačních časů T_1 je na obrázku 4.4.

Obrázek 4.2. Pulzní sekvence Inversion recovery a vývoj spinového systému v průběhu této sekvence v závislosti na délce prodlevy τ.

Obrázek 4.3. Série ¹³C experimentů inversion recovery měřených s různě dlouhou prodlevou τ.

Obrázek 4.4. Série ¹H experimentů inversion recovery měřených s různě dlouhou prodlevou τ.

4.2 Příčná relaxace

Během příčné relaxace (spin-spinové, transversální) dochází k ubývání magnetizace v rovině xy. Příčná relaxace spočívá ve vzájemné interakci jader, spojené s výměnou orientace jejich spinů a předáním energie. Zkracuje střední doby života jader v excitovaném stavu, ale nevede ke vzniku přebytku jader na nižší energetické hladině. Důsledkem příčné relaxace ubývá intenzita snímaného signálu (FIDu). Úbytek magnetizace v rovině xy probíhá podle rovnice

$$M_{xy} = M_0 \cdot e^{-t/T_2}$$

kde M_{xy} je velikost magnetizace v rovině xy, M_0 je magnetizace v rovině xy po 90° pulzu, t je čas po 90° pulzu a T_2 je spin-spinový relaxační čas (obrázek 4.5). Čím je T_2 kratší, tím rychleji ubývá magnetizace v rovině xy a také FID ubývá rychleji. Krátké časy T_2 mají za následek rozšíření signálů ve spektru (viz kapitola 2.4 o Fourierově transformaci). T_2 bývá nejčastěji v řádu stovek milisekund až sekund. Obecně lze říci, že velké molekuly (např. proteiny, polymery) mají krátké relaxační časy T_2 a signály těchto látek proto bývají rozšířené. Naopak malé molekuly (např. běžná rozpouštědla) mají T_2 dlouhé a ve spektru mají úzké signály. Relaxační čas T_2 je vždy kratší nebo rovný času T_1 (nikdy nemůže nastat situace, že došlo k úplné podélné relaxaci – rovnovážná magnetizace je v ose z, a zároveň ještě část magnetizace zůstává v rovině xy – nedošlo k příčné relaxaci).

Obrázek 4.5. Doznívání příčné magnetizace *M*_{xy} k nulové rovnovážné hodnotě po 90° pulzu.

Pro měření relaxačních časů T_2 se používá pulzní sekvence spinové echo (kapitola 3.1). Tato sekvence začíná prodlevou, během níž se v systému ustanoví rovnovážný stav. Poté následuje 90° pulz, který sklopí magnetizaci z osy z do roviny xy. Během doby τ vykonává magnetizace precesní pohyb kolem osy z se svojí Larmorovou frekvencí. Za dobu τ se magnetizace otočí o úhel ϕ . Poté následuje 180° pulz podél osy x, který ponechá magnetizaci v rovině xy, ale překlopí ji na druhou stranu osy x. Během doby τ vykonává magnetizace opět precesní pohyb kolem osy z. Za dobu τ se magnetizace otočí o stejný úhel ϕ a tím pádem se vrátí opět do osy x, ale její intenzita je snížena kvůli příčné relaxaci, ke které došlo v průběhu této pulzní sekvence. Čím je doba τ delší, tím je výsledná magnetizace v ose x menší. Příklad měření vodíkových relaxačních časů T_2 pomocí spinového echa je na obrázku 4.6.

Obrázek 4.6. ¹H spinové echo měřené s různě dlouhou prodlevou τ.

4.3 Relaxační mechanismy

Spontánní relaxace (bez externích vlivů) je pro izolovaná jádra se spinem ½ prakticky nulová. Aby mohlo docházet k relaxaci, musí na jádro působit fluktuující magnetické pole. Hlavním zdrojem fluktuujícího magnetického pole je molekulový pohyb, díky kterému dochází ke změnám ve vzdálenosti a vzájemné orientaci daného jádra s dalšími magneticky aktivními jádry v molekule. Molekulární pohyb lze popsat efektivním **korelačním časem** τ_c , který v případě translačního pohybu definuje průměrný čas mezi dvěma srážkami molekul anebo při rotačním pohybu střední čas pootočení molekuly o 1 radián. Hodnota τ_c souvisí s velikostí a symetrií molekuly, viskozitou a teplotou. Typický korelační čas malých molekul v neviskózních rozpouštědlech je v řádu 10⁻¹² sekund.

Rychlost spin-mřížkové relaxace $(1/T_1)$ je nejvyšší, když korelační frekvence molekulárního pohybu $(1/\tau_c)$ je blízká rezonanční frekvenci relaxujících jader ($\tau_c \cdot \omega_0 \sim 1$, kde ω_0 je úhlová rychlost Larmorovy precese) a rychlost relaxace klesá, je-li molekulární pohyb výrazně rychlejší nebo pomalejší. Naproti tomu k rychlosti spin-spinové relaxace $(1/T_2)$ přispívá nízko- i vysokofrekvenční molekulární pohyb, takže $1/T_2$ monotónně klesá s klesajícím τ_c .

Souvislost relaxačních časů T_1 , T_2 s korelačním časem τ_c ukazuje obrázek 4.7. Za podmínek rychlé molekulární reorientace ($\tau_c \cdot \omega_0 \ll 1 - tzv$. **podmínka extrémního zúžení čar**, která bývá splněna pro většinu malých až středně velkých organických látek v roztocích) jsou obě relaxační rychlosti a tedy i relaxační časy T_1 a T_2 stejné.

Pozorované relaxační rychlosti $1/T_1$ a $1/T_2$ jsou sumou relaxačních rychlostí několika různých mechanismů, jež k relaxaci přispívají.

Obrázek 4.7. Schematicky znázorněný vztah mezi relaxačními časy T_1 , T_2 a korelačním časem τ_c .

Dipól-dipólová relaxace (DD) je způsobena interakcí magnetických dipólů jader a je dominujícím relaxačním mechanismem pro jádra se spinem ½. Existují dva typy interakce mezi magneticky aktivními jádry: skalární (*J*) interakce, která je zprostředkována elektrony a přímá dipól-dipólová (nebo dipolární) interakce, která závisí na vzdálenosti mezi jádry a jejich vzájemné orientaci vůči magnetickému poli. Na rozdíl od skalární interakce nevede přímá dipól-dipólová interakce k štěpení signálů látek v roztoku, protože rychlá reorientace molekul vede k zprůměrování této interakce na nulovou střední hodnotu. Rychlé změny velikosti této interakce v průběhu molekulových pohybů ale přispívají k relaxaci. Rychlost dipól-dipólové relaxace klesá se šestou mocninou vzdálenosti interagujících jader a tato relaxace je tedy nejúčinnější při interakcích mezi přímo navázanými atomy. To je důvodem, proč kvartérní uhlíkové atomy mívají delší relaxační časy než uhlíky s přímo navázanými vodíkovými atomy. Rychlost dipól-dipólové relaxace je také přímo úměrná gyromagnetickým poměrům interagujících jader. Z tohoto důvodu jsou relaxační rychlosti jader ¹³C v deuterovaných rozpouštědlech menší než v molekulách s vodíkem ¹H (²H má přibližně 6,5 krát menší gyromagnetický poměr než ¹H).

Kvadrupólová relaxace (QR) je obvykle dominujícím relaxačním mechanismem pro jádra se spinem $I > \frac{1}{2}$, která mají elektrický kvadrupólový moment v důsledku nesférického rozložení elektrického náboje. Molekulární pohyb pak vede k fluktuaci elektrického pole a může přispívat k relaxaci. Rychlost kvadrupólové interakce závisí na velikosti kvadrupólového momentu jádra, který je konstantní pro daný izotop, a symetrii molekuly. Některá kvadrupolární jádra, například ²H nebo ⁶Li, mají malý kvadrupólový moment a jejich relaxace není výrazně rychlejší než u jader se spinem ½ a lze je v roztoku bez problémů měřit. Jádra s velkým kvadrupólovým momentem mívají výrazně kratší relaxační časy T_1 i T_2 , což vede ke značnému rozšíření jejich signálů ve spektru, často není ani možné rozlišit signály jednotlivých neekvivalentních jader v molekule. Kvadrupolární relaxace může ovlivnit i okolní magneticky aktivní jádra, protože rychlá relaxace může rozšířit nebo zcela odstranit skalární interakce s kvadrupolárním jádrem, což přispívá k relaxaci sledovaného jádra (mechanismem skalární relaxace). Tento efekt lze běžně pozorovat například pro ¹⁴N–H, ¹⁴N–C, ¹¹B–H a ¹¹B–C skupiny. Například bývá obtížné pozorovat protony nebo uhlíky přímo navázané na bor, protože jejich signály jsou rozšířené tímto mechanismem. Ze stejného důvodu většinou nejsou ve vodíkových nebo uhlíkových spektrech pozorovatelné skalární interakce s dusíkem ¹⁴N (přestože ¹⁴N je magneticky aktivní a má téměř 100% přirozené izotopové zastoupení). Skalární interakce s dusíkem ¹⁴N lze pozorovat pouze pro molekuly s tetraedrickou symetrií, například tetraalkylamonné soli nebo amonné kationty (obrázek 4.8).

Obrázek 4.8. ¹H signál amonného kationtu molekuly NH₄Cl v DMSO. Signál je rozštěpen na tři linie o stejné intenzitě díky skalární interakci jader vodíku s jádrem dusíku ¹⁴N. Dusík ¹⁴N má spinové kvantové číslo *I* = 1 a tedy tři možné spinové stavy (*m* = -1, 0, 1).

Spin-rotační relaxace (SR) se výrazně uplatňuje u velmi malých molekul či velmi rychle rotujících skupin (např. CH₃), zvláště při vyšších teplotách a v plynech. Rychle rotující molekuly a skupiny s malým momentem setrvačnosti generují rotační magnetický moment, který může interagovat s jaderným magnetickým momentem a vést k relaxaci jádra.

Relaxace anizotropií chemického posunu (CSA). Protože stínící konstanta σ je obecně anizotropní (její hodnota závisí na orientaci molekuly vůči poli **B**₀), způsobuje rotace molekul náhodné fluktuace magnetického pole. Molekulární reorientace sice zprůměrují velikost stínění (chemického posunu) jádra, ale fluktuující složky magnetického pole s vhodnými frekvencemi mohou přispívat k relaxaci jádra.

Skalární relaxace (SC) se může uplatnit tehdy, když pozorované jádro má skalární interakci s jiným jádrem a tato interakce je modulována buď chemickou výměnou, nebo relaxací tohoto jádra. Fluktuace skalární spin-spinové interakce *J* pak může vést k fluktuujícím magnetickým polím v místě pozorovaného jádra a přispívat tak k jeho relaxaci.

Podobným způsobem jako k relaxaci přispívají vzájemné interakce mezi jádry (skalární a dipolární) mohou relaxační časy významně zkracovat i interakce s nepárovými elektrony v paramagnetických látkách. Přítomnost paramagnetických iontů v měřeném roztoku může způsobit značné rozšíření spektrálních čar. Zvýšení relaxačních rychlostí při interakcích s nepárovým elektronem využívají **relaxační činidla** (například *tris*(acetylacetonát) chromitý), která přispívají rovnoměrně ke zvýšení relaxačních rychlostí jader substrátu a umožňují tak zkrátit repetiční čas pulzní sekvence (zkrácením doby *d*₁ nutné pro návrat do rovnovážného stavu). Pokud je paramagnetický ion pevně vázán v komplexu nebo molekule (například v metaloproteinech), lze paramagnetickou relaxaci využít k získávání strukturních informací, protože tato relaxace (a tedy rozšíření signálů) klesá se šestou mocninou vzdálenosti jádra od paramagnetického centra. Molekuly kyslíku O₂ jsou také paramagnetické a mohou zkracovat relaxační časy látek v roztoku, proto je třeba před měřením relaxačních časů kyslík z roztoku odstranit buďto vakuem nebo probubláním roztoku dusíkem nebo argonem. Protože rychlost NMR relaxace úzce souvisí s pohybem molekul, lze měření relaxačních časů využít ke studiu molekulové dynamiky. Například různé rychlosti molekulových pohybů v různých částech (segmentech) molekuly se projeví na rychlosti relaxace. Například ¹³C relaxační časy T_1 v 1-bromdekanu (obrázek 4.9) jsou přibližně stejné pro všechny uhlíky v centrální části molekuly, ale prodlužují se blízko konců, kde je konformační flexibilita a rychlost molekulových pohybů vyšší. V dekan-1-olu se uhlíkové T_1 časy postupně zkracují, čím blíže je daný uhlík blíže OH skupině, což je pravděpodobně důsledek "ukotvení" OH skupin vzájemnými mezimolekulovými vodíkovými vazbami. Efekt molekulové dynamiky lze také vypozorovat u cholesterol chloridu, kde všechny CH uhlíky umístěné v cyklickém skeletu molekuly mají přibližně stejné T_1 časy (0,5 s) a T_1 časy CH₂ uhlíků v této části molekuly jsou přibližně 0,25 s (díky dvojnásobné C–H dipolární interakci) – tato rigidní část molekuly se pohybuje jako jeden celek. Uhlíkové T_1 časy v bočním řetězci jsou kvůli zvýšené mobilitě delší. Methylové skupiny mají většinou delší časy T_1 , protože dipolární interakce jsou potlačeny rychlou rotací methylové skupiny. Podobným způsobem lze studovat i molekulovou dynamiku biomolekul. Například relaxační časy v proteinech se budou významně lišit pro rigidní globule a flexibilní oligopeptidové smyčky.

Obrázek 4.9. *T*₁ hodnoty vybraných ¹³C jader v cholesterol chloridu.

5 NUKLEÁRNÍ OVERHAUSERŮV EFEKT

Nukleární Overhauserův efekt (NOE) je jev, kdy při ozařování jednoho jádra dochází ke změně intenzity signálů jader v prostorové blízkosti ozařovaného jádra. Techniky, které využívají NOE, mohou sloužit například k určování konformace a konfigurace molekul nebo k určování třídimenzionální struktury biomolekul.

Principem NOE je zkřížená relaxace spinových stavů jader. Princip vzniku NOE je ukázán na obrázku 5.1. Jako modelový systém používáme dva vodíky ¹H, které jsou prostorově blízké, ale nemají mezi sebou nepřímou spin-sinovou interakci. Ve vodíkovém spektru takového systému bychom tedy pozorovali dva singlety (H1 a H2). Schematický energetický diagram rovnovážného stavu takového spinového systému je na obrázku 5.1 vlevo nahoře. Tento systém má nejnižší energii, pokud jsou obě vodíková jádra ve spinovém stavu α . Protože mezi vodíkovými jádry v tomto modelovém spinovém systému není nepřímá interakce, oba přechody vodíku H1 ($\alpha\alpha \rightarrow \beta\alpha$ i $\alpha\beta \rightarrow \beta\beta$) jsou spojeny s identickou změnou energie a ve spektru tedy pozorujeme jenom jednu čáru signálu tohoto vodíku. Totéž platí i pro signál vodíku H2. Pokud by mezi vodíkovými jádry existovala nepřímá spin-spinová interakce, došlo by k pozměnění energetických rozdílů jednotlivých přechodů a ve spektru bychom pozorovali pro každý z vodíků dublet (podobně jako na obrázku 3.13 v kapitole 3.1).

Pokud provedeme selektivní inverzi spinového stavu vodíku H1, prohodíme populace spinových stavů tohoto vodíku (na obrázku 5.1 je to znázorněno vyměněním počtu kuliček na nižší a vyšší energetické hladině u obou přechodů vodíku H1). Pokud bychom měřili spektrum tohoto spinového systému po selektivní inverzi spinového stavu vodíku H1, získali bychom signál tohoto vodíku se zápornou intenzitou. Signál vodíku H2 by nebyl nijak ovlivněn.

Spinový systém po selektivní inverzi spinového stavu vodíku H1 ale neodpovídá rovnovážnému stavu a díky relaxaci se bude do rovnováhy postupně navracet. Můžeme si představit několik různých dějů, které povedou zpět do rovnovážného stavu. Jednokvantový relaxační děj způsobí, že se změní spinový stav jednoho jádra H1, tedy například $\beta\beta \rightarrow \alpha\beta$, jak je znázorněno na obrázku 5.1 vpravo nahoře. Jednokvantové relaxační děje vedou k tomu, že intenzita signálu vodíku H1 postupně narůstá až ke své původní hodnotě odpovídající rovnovážnému stavu spinového systému. Jednokvantové relaxační děje vedou k tomu stavu spinového systému.

Nulkvantový relaxační děj je takový, při kterém je celková změna spinu nulová. To znamená, že pokud se změní spinový stav vodíku H1 ve směru $\beta \rightarrow \alpha$, musí se zároveň změnit spinový stav vodíku H2 ve směru $\alpha \rightarrow \beta$. Tento děj pak povede k postupnému návratu do rovnovážné populace spinových stavů vodíku H1 ale zároveň i ke změně populace spinových stavů vodíku H2 a tedy ke změně intenzity signálu tohoto vodíku ve spektru. Nulkvantové relaxační děje vedou ke snížení intenzity signálu vodíku H2.

Při dvoukvantovém relaxačním ději se změní spinový stav dvou jader zároveň ($\beta\beta \rightarrow \alpha\alpha$). Takový relaxační děj opět vede k návratu populace spinových stavů vodíku H1 do rovnováhy, ale zároveň dochází ke zvýšení intenzity signálu vodíku H2.

Nukleární Overhauserův efekt tedy může být buďto kladný nebo záporný v závislosti na tom, který z procesů zkřížené relaxace (nulkvantový nebo dvoukvantový) je více pravděpodobný. Pravděpodobnost těchto relaxačních dějů souvisí s pohyblivostí molekul. Nulkvantové relaxační děje jsou nejpravděpodobnější, pokud je rychlost reorientace molekul blízká rozdílu rezonančních frekvencí sledovaných jader, tedy v případě jader ¹H se jedná řádově o Hz až kHz. Takto pomalu se reorientují velké molekuly (například proteiny). Naopak dvoukvantové relaxační děje jsou nejpravděpodobnější při rychlosti reorientace molekul blízké dvojnásobku rezonanční frekvence sledovaných jader, tedy čelazační děje jsou nejpravděpodobnější při rychlosti reorientace molekul blízké dvojnásobku rezonanční frekvence sledovaných jader, tedy čelazační celazační děje jsou nejpravděpodobnější při rychlosti reorientace molekul blízké dvojnásobku rezonanční frekvence sledovaných jader, tedy řádově GHz.

Obrázek 5.1. Princip vzniku NOE.

Pro kvantifikaci reorientace molekul se používá rotační korelační čas τ_c , který udává průměrnou dobu, za kterou se molekula pootočí o jeden radián. Pro NOE potom platí, že je pozitivní, pokud $\omega_0 \cdot \tau_c$ je menší než 1, kde ω_0 je úhlová rychlost Larmorovy precese daného jádra. Naopak NOE je negativní, pokud $\omega_0 \cdot \tau_c$ je větší než přibližně 1. Pokud je $\omega_0 \cdot \tau_c$ blízké 1, NOE je nulové a tedy neměřitelné i pro jádra v prostorové blízkosti (obrázek 5.2). Při měření na 500 MHz spektrometru při pokojové teplotě je ¹H–¹H NOE nulový pro molekuly s relativní molekulovou hmotností kolem 1000. Při měření prostorových kontaktů v organických molekulách se proto častěji využívá jiný typ experimentu, ROESY, který je popsán níže.

Pro maximální velikost NOE u malých molekul platí: $NOE_{max} = \gamma_A/2\gamma_B$, kde γ_A je gyromagnetický poměr ozařovaného jádra a γ_B je gyromagnetický poměr sledovaného jádra. Pro homonukleární ¹H– ¹H NOE je tedy maximální možné navýšení intenzity o 50%. Při ozařování vodíků a pozorování uhlíků mohou být intenzity uhlíkových signálů zvýšeny až o 200%.

NOE se uplatňuje při měření uhlíků s dekaplinkem vodíků. Při dekaplinku jsou ozařována vodíková jádra, což vede k nárůstu intenzity signálů uhlíkových jader. Tento nárůst ale není stejný pro všechny uhlíky, protože jednotlivá uhlíková jádra nemají stejnou vzdálenost k vodíkům ve svém okolí. Například kvarterní uhlíky mají větší vzdálenost k nejbližším vodíkům než ostatní typy uhlíků. To je také jedním z důvodů, proč není možné běžně měřená uhlíková spektra kvantifikovat. Intenzity kvarterních uhlíků jsou méně obohacené NO efektem.

Protože se v principu jedná o relaxační děj, není NOE pozorovatelný okamžitě po zahájení ozařování, ale postupně se buduje v čase. Toho lze využít při měření kvantitativních ¹³C spekter (obrázek 3.8 v kapitole 3.1). Dekaplink není zapnut po celou dobu experimentu ale pouze během měření FIDu. Tím, že je zapnut dekaplink během akvizice dat, dochází ke kolapsu všech multipletů

způsobených C–H interakcí na singlety. Zároveň se ale nestačí vybudovat NOE a intenzity uhlíkových signálů tak nejsou ovlivněny vzdáleností k jádrům ¹H.

Obrázek 5.2. Závislost velikosti NOE na velikosti studovaných molekul.

NOE je nepřímo úměrný šesté mocnině vzdáleností mezi ozařovaným a pozorovaným jádrem. Velikost NOE tedy rychle klesá s přibývající mezijadernou vzdáleností a NOE je tak pozorovatelný pouze do vzdálenosti přibližně 5 Å. Závislost NOE na mezijaderné vzdálenosti lze využít k určování těchto vzdáleností. Pokud některou mezijadernou vzdálenost známe (například vzdálenost mezi vodíky v CH₂ skupině je typicky 1,6 Å), můžeme z poměrů intenzit NOE vypočítat i vzdálenost mezi dalšími jádry (viz obrázek 5.3). Nicméně přesné určování vzdáleností pomocí NOE je poměrně komplikované, protože ozařované a pozorované jádro nikdy nejsou izolované a blízkost dalších jader vede ke změnám ve velikosti NOE, které je třeba vzít v úvahu při interpretaci naměřených dat.

 $d_{\text{H1-H3}} = d_{\text{H1-H2}} \cdot (NOE_{\text{H1-H2}} / NOE_{\text{H1-H3}})^{-1/6}$

Obrázek 5.3. Využití NOE pro měření mezijaderných vzdáleností.

Pokud ozařujeme jedno jádro (například H-A) a díky NOE dojde k obohacení intenzity prostorově blízkého jádra H-B, NOE se může dále přenášet na další jádra, která jsou v blízkosti jádra H-B. Tomuto jevu se říká spinová difuze a je schematicky znázorněn na obrázku 5.4. Pokud tedy ozařujeme jádro H-A a necháme NOE dostatečně dlouho vyvíjet, můžeme pozorovat obohacení i signálů, které nejsou v prostorové blízkosti k ozařovanému jádru, ale mají mezi sebou prostředníka, který umožní NOE přenést i na vzdálenější jádra. Doba, během které se NOE nechá vyvíjet, se nazývá směšovací čas (*t*_{mix},

z anglického mixing time). Správná volba délky směšovacího času je klíčová pro úspěch experimentů založených na NOE. Při krátkých t_{mix} je NOE obohacení malé a tedy výsledné signály budou slabé, ale během této krátké doby ještě nedojde ke spinové difuzi a ve spektru tak budeme pozorovat pouze interakce mezi jádry, které jsou skutečně prostorově blízké. Pokud bude t_{mix} delší, signály v získaném spektru budou intenzivnější, ale může dojít ke spinové difuzi a tedy objevení signálu i prostorově vzdálenějšího jádra. V běžné praxi se nejčastěji volí délka t_{mix} 200–300 ms, která je kompromisem pro získání maximálního NOE a minimální spinové difuze. Pokud bychom však chtěli využít NOE pro měření mezijaderných vzdáleností, museli bychom používat kratší t_{mix} .

Obrázek 5.4. NOE a spinová difuze.

Experimenty využívající NOE pro sledování prostorových interakcí v malých molekulách mohou být buďto jednodimenzionální nebo dvoudimenzionální. 1D experimenty se nejčastěji měří jako tzv. diferenční experimenty. Nejprve se změří spektrum po selektivním ozáření (vedoucím k inverzi nebo saturaci) vybraného signálu (spektrum **A** v obrázku 5.5). V tomto spektru jsou intenzity ostatních signálů pozměněny díky NOE, ale tyto změny intenzit bývají malé a tedy obtížně pozorovatelné. Poté se změří identický experiment, ale frekvence selektivního ozařování je pozměněna tak, aby nezasahovala do žádného signálu ve spektru (spektrum **B** v obrázku 5.5). Tím získáme spektrum prakticky totožné s běžným 1D spektrem bez selektivního ozařování. Poté od spektra **A** odečteme spektrum **B**, tím získáme výsledné diferenční spektrum, ve kterém jsou dobře patrné změny intenzit signálů způsobené NOE.

Praktický příklad diferenčních NOE spekter je uveden na obrázku 5.6, kde jsou ukázána tři diferenční spektra získaná po selektivním ozařování tří různých jader vodíku v molekule *trans*-pinokarveolu. Tato spektra umožňují jednak přiřazení všech vodíkových signálů ale také například určení relativní konfigurace na uhlíku C3 nebo určení konformace molekuly.

Obrázek 5.5. Měření diferenčních NOE experimentů.

Obrázek 5.5. Diferenční ¹H NOE spektra *trans*-pinokarveolu.

Dvoudimenzionální NOE experimenty umožňují detekci všech prostorových kontaktů ve studované molekule během jediného experimentu bez nutnosti postupného nastavování selektivní

ozařovací frekvence. Nevýhodou těchto experimentů je ale jejich větší časová náročnost a závislost rozlišení v nepřímo detekované dimenzi na počtu inkrementů 2D experimentu.

Kvůli výše popsané závislosti velikosti NOE na velikosti molekul a kvůli nulovému NOE u molekul střední velikosti se běžně pro detekci prostorových interakcí v malých a středně velkých molekulách používá jiný typ experimentu, který se nazývá ROESY (Rotating frame nuclear Overhauser effect SpectroscopY). Během tohoto experimentu je vektor magnetizace nejprve sklopen do roviny *xy* a tam je "uzamčen" pomocí tzv. spin-locku. Budování NOE během směšovacího času potom není řízeno velikostí magnetického pole v ose *z* spektrometru (pole B_0 s Larmorovou frekvencí v řádu stovek MHz) ale velikostí magnetického pole B_1 , které je aplikováno v rovině *xy* a slouží k uzamčení magnetizace v této rovině (řádově kHz). To vede k tomu, že NOE je vždy pozitivní. Ve 2D variantě ROESY mají signály způsobené NOE vždy opačnou fázi (kladné signály vs. záporné signály) než diagonála. Maximální obohacení signálu v případě ROESY v homonukleárním ¹H–¹H experimentu se pohybuje v rozmezí 39–68%. Příklady 2D-ROESY spekter jsou na obrázcích 5.6 a 5.7.

Pokud během směšovacího času dochází k chemické výměně (viz kapitola 10.2), budeme ve výsledném 2D spektru pozorovat krospíky i mezi signály vyměňujících se jader. V ROESY spektrech ale snadno odlišíme tyto výměnné krospíky od krospíků způsobených NOE, protože výměnné signály mají stejné znaménko (stejnou fázi) jako diagonála. Pulzní sekvence pro měření NOESY a ROESY spekter lze tedy využít i pro studium chemické výměny.

Obrázek 5.6. Část 2D-ROESY spektra trans-pinokarveolu.

Obrázek 5.7. 2D-ROESY spektrum zobrazené látky.

6 Gradienty magnetického pole

Obrázek xx. Gradientové echo.

7 PRAKTICKÉ ASPEKTY NMR SPEKTROSKOPIE

7.1. NMR spektrometr

Magnet

U většiny současných NMR spektrometrů určených pro měření kapalných vzorků je magnetické pole vytvářeno supravodivými cívkami tvořenými několika tisíci závity ze speciálních slitin. V současné době dostupné supravodivé materiály, které jsou schopné snášet vysoká magnetická pole, mají kritickou teplotu několik málo stupňů od absolutní nuly. Supravodivá cívka tedy musí být ponořena v kapalném heliu. Zásoby helia na Zemi jsou omezené a jeho cena je vysoká, proto je snahou co nejvíce jeho spotřebu omezit. Zásadní úspory kapalného helia se dosahuje tím, že část NMR magnetu s kapalným heliem a supravodivou cívkou je od okolního prostředí s pokojovou teplotou oddělena prostorem s kapalným dusíkem, který se snadno získává ze vzduchu a jeho cena je nízká. Kapalný dusík se musí pravidelně doplňovat každé 1–2 týdny a kapalné helium se doplňuje cca jednou za 6 měsíců. Odpařené helium lze také jímat a znovu zkapalnit. Některé novější NMR magnetu.

Supravodivou cívkou teče proud okolo 100 A. Intenzita takto dosaženého magnetického pole je 7–23 T. Pole musí být vysoce stabilní, jeho kolísání vede k rozšíření linií ve spektru. Stejně tak vede k rozšíření linií nízká homogenita magnetického pole – pokud se vyskytují jinak identická jádra z různých částí vzorku při různém poli, rezonují při různých frekvencích. Homogenita pole se upravuje speciální sadou prostorově různě orientovaných cívek, u nichž se intenzita proudu a tím i dodatkového pole upravují tak, aby výsledné magnetické pole bylo co nejvíce homogenní.

Současné NMR magnety jsou většinou tzv. stíněné. To znamená, že obsahují další cívku, která vytváří opačné magnetické pole takovým způsobem, aby vně NMR magnetu bylo magnetické pole co nejmenší a neomezovalo tak například provoz některých zařízení.

Pokud by se část supravodivé cívky ocitla při vyšší teplotě, než která umožňuje supravodivost (například při pozdním nebo neodborném doplňování kapalného helia), tato část cívky přestane být supravodivá, má nenulový odpor a procházející proud cívku zahřívá. To vede k zahřátí další části cívky a ztrátě supravodivosti. Výsledkem této řetězové reakce je potom úplná ztráta supravodivých vlastností celé cívky, přeměna elektrické energie na tepelnou (spojená s prudkým odpařením veškerého helia) a ztráta magnetického pole. Tomuto nechtěnému procesu se podle anglického termínu říká quench NMR magnetu.

Obrázek 7.1. Schematický obrázek NMR magnetu.

Sonda

Část NMR spektrometru, kde jsou umístěny přijímací a vysílací cívky, korekční cívky pro dosažení maximální homogenity pole a zařízení ovládající přesné nastavení teploty vzorku se nazývá sonda. Sondy lze v případě potřeby měnit. Některé sondy jsou konstruovány tak, že umožňují měřit určitý typ experimentu s větší citlivostí, viz inverzní sondy (kapitola 3.2). U současných spektrometrů je obvykle stejná cívka použita pro vyslání pulzu i pro snímání odezvy. Další cívka nebo cívky slouží pro vysílání frekvencí jiného jádra, vytváření gradientů pole apod.

Největším slabinou NMR spektroskopie je poměrně nízká citlivost. V každém experimentu je potřeba dosáhnout dostatečného poměru signálu k šumu, aby bylo možné výsledná spektra interpretovat. Část elektronického šumu, tzv. tepelný šum, vzniká v jakémkoliv elektronickém zařízení náhodným pohybem elektronů. Snížením teploty daného elektronického zařízení dochází k potlačení tepelného šumu. Některé moderní NMR sondy (nazývané kryosondy) využívají tohoto jevu ke zvýšení citlivosti. Přijímací cívka, vodiče, které vedou NMR signál, a první zesilovač signálu jsou v těchto sondách chlazeny buďto heliem o teplotě asi 20 K nebo dusíkem o teplotě asi 80 K. To vede k dramatickému zlepšení poměru signálu k šumu (u heliem chlazených kryosond asi pětkrát) a zkrácení doby NMR experimentu (pětkrát lepší poměr signálu k šumu umožňuje zkrátit experiment 25 x).

Konzole

Veškerá elektronická zařízení, která jsou nutná pro průběh NMR experimentu, jsou umístěna v tzv. konzoli. Konzole obsahuje syntezátor frekvencí opatřený zesilovačem (vysílačem) o výkonu obvykle 50-300 W, který musí být schopen produkovat krátké radiofrekvenční pulzy o přesné amplitudě, frekvenci a fázi. Vysílače bývají obvykle dva nebo více, protože často je ozařováno i jiné jádro než měřené. Kromě toho je další nezávislý kanál využit pro udržení stabilního pole (lock), ten obvykle využívá jader deuteria v použitém rozpouštědle. Při snímání odezvy systému je cívka přepnuta na přijímač, kde je signál zesílen a digitalizován. FID je uložen do paměti řídícího počítače, kde jsou FIDy z jednotlivých průchodů sčítány. V konzoli bývá také umístěna teplotní jednotka, která řídí teplotu vzorku v průběhu experimentu. Mezi další nutné součásti NMR spektrometru, které jsou umístěny v konzoli, patří například jednotka, která řídí použití gradientových pulzů, nebo jednotka, která má na starosti řízení korekčních cívek pro získání maximální homogenity magnetického pole.

Obrázek 7.2. NMR spektrometr.

7.2. Příprava NMR experimentu

NMR kyvety

Pro měření NMR spekter se nejčastěji používají skleněné kyvety s vnějším průměrem 5 mm a objemem roztoku 500–600 μL. Existují však i jiné typy kyvet, například pro měření málo citlivých jader je možné použít kyvety s vnějším průměrem 10 mm, do kterých se vejde větší množství vzorku. Tyto kyvety lze ale použít pouze s odpovídající sondou. Naopak pokud je množství vzorku limitované, je možné použít tzv. Shigemi kyvety, ve kterých je potřebné množství roztoku asi 150–200 μL a

sloupec vzorku je ohraničen materiálem s magnetickou susceptibilitou adjustovanou tak, aby byla totožná jako susceptibilita použitého rozpouštědla. Pokud by se totiž použila běžná NMR kyveta s tak malým množstvím roztoku, homogenita magnetického pole by byla narušena. Pro malá množství vzorku je také možné použít NMR kyvety s vnějším průměrem 3 mm (objem roztoku cca 150 μL) nebo 1,6 mm (objem roztoku 35 μL).

Obrázek 7.3. NMR kyvety (Shigemi, mikro),...

Rozpouštědlo, standard

Vzorek je rozpuštěn v deuterovaném rozpouštědle a umístěn v kyvetě, která je přesunuta do středu magnetu na místo obklopené cívkami. Deuterovaná rozpouštědla se používají, protože rozpouštědlo je oproti měřené látce většinou v obrovském nadbytku a signál vodíku ¹H rozpouštědla by tak byl v ¹H NMR spektru mnohem intenzivnější a mohl by překrýt signály měřené látky. Deuterace rozpouštědel není nikdy stoprocentní a tak je v ¹H NMR spektrech vidět i signál nedeuterovaného rozpouštědla. V ¹³C spektrech pak můžeme pozorovat i signály uhlíků rozpouštědla, které bývají spin-spinovou interakcí s deuteriem rozštěpeny na multiplety.

Obrázek 7.4. Nahoře: ¹H (vlevo) spektrum zbytkové nedeuterované frakce chloroformu a ¹³C spektrum (vpravo) deuterovaného chloroformu. Signál je rozštěpen na tři linie o stejné intenzitě díky spin-spinové interakci jádra ¹³C s jádrem deuteria, které má spinové kvantové číslo *I* = 1 a tedy tři magnetické kvantové stavy *m* = –1, 0, 1. Dole: ¹H a ¹³C spektra deuterovaného dimethylsulfoxidu se stopami ne zcela deuterovaných molekul. Štěpení signálu v ¹H spektru je způsobeno interakcí vodíku ¹H se dvěma jádry deuteria, štěpení signálu v ¹³C spektru je způsobeno interakcí uhlíku ¹³C se třemi jádry deuteria.

Deuterium z rozpouštědel se během NMR experimentů používá k takzvanému uzamčení magnetického pole (lock). NMR spektrometr neustále sleduje rezonanční frekvenci deuteriového signálu. Pokud by stabilita magnetického pole spektrometru nebyla dostatečná, během experimentu by došlo ke změně rezonanční frekvence (viz rezonanční podmínka, kapitola 2.1). NMR spektrometr automaticky zapíná korekční cívku, která vytváří dodatečné magnetické pole takovým způsobem, aby rezonanční frekvence deuteria byla konstantní, a tímto způsobem tedy zajišťuje dlouhodobou stabilitu magnetického pole.

Počátek stupnice chemických posunů δ se z technických důvodů stanovuje obtížně v absolutní hodnotě. Ujalo se používání vhodného standardu, který má ve spektru jedinou linii, kterou lze snadno najít mezi ostatními liniemi a přidává se buď přímo k měřené látce (interní standard) nebo v zatavené kapiláře do kyvety se vzorkem (externí standard). Pro ¹H NMR spektra to je nejčastěji tetramethylsilan (TMS), (CH₃)₄Si s dvanácti ekvivalentními vodíkovými atomy. Ve spektrech je to singlet, který je obvykle nejvíce vpravo. Pro ¹³C NMR spektra se u roztoků v CDCl₃ nejčastěji používá prostřední linie jeho signálu s posunem δ = 77 ppm. Tetramethylsilan není rozpustný ve vodě, proto se při měření ve vodných roztocích používají jiné standardy; například 1,4-dioxan s chemickým posunem ¹H 3,75 ppm nebo sodná sůl kyseliny 4,4-dimethyl-4-silapentan-1-sulfonové (DSS, obrázek 7.5). Vodíková spektra měřená ve vodě není vhodné referencovat na zbytkový signál nedeuterované frakce vody (HDO), protože chemický posun vody závisí na teplotě, pH a iontové síle roztoku.

Obrázek 7.5. Struktura sodné soli kyseliny 4,4-dimethyl-4-silapentan-1-sulfonové (DSS) používané jako interní standard při měření NMR spekter ve vodných roztocích.

Tabulka 7.1. ¹H chemické posuny zbytkového signálu nedeuterované frakce rozpouštědel běžně používaných pro měření NMR spekter a ¹³C chemické posuny příslušných deuterovaných rozpouštědel.

Rozpouštědlo	Vzorec	<i>δ</i> (¹H)	δ(¹³ C)
Chloroform	CDCl₃	7,26	77,0
Benzen	C_6D_6	7,27	128,0
Acatopitril	CD₃CN	1,94	1,3 (CD₃)
Acetomitm			118,2 (CN)
Acoton	CD ₃ COCD ₃	2,05	29,8 (CD₃)
ACELOIT			206,3 (C=O)
Dimethylsulfoxid	CD ₃ SOCD ₃	2,50	39,7
Methanol	CD₃OD	3,31	49,0
Voda	D_2O	~4,8	-

Někdy není možné nebo vhodné měřit NMR spektra v deuterovaných rozpouštědlech. Například pokud je vzorek pro měření odebírán přímo z reakční směsi, ve které se nepoužívají deuterovaná rozpouštědla, nebo pokud není dostupné deuterované rozpouštědlo, ve kterém je potřeba provádět daný NMR experiment. Dalším případem jsou experimenty v protických rozpouštědlech, kde se při použití deuterovaných rozpouštědel všechny vyměnitelné vodíky vymění za deuterium a jejich signály tak zmizí z ¹H NMR spekter a není je tedy možné využít při interpretaci daného experimentu. Typickým příkladem jsou peptidy a proteiny rozpustné ve vodě. Při měření v D₂O nejsou pozorovatelné (mimo jiné) amidické vodíky, které jsou ale mimořádně důležité pro určení struktury těchto látek, protože to jsou jediné vodíky na peptidových vazbách, které spojují jednotlivé aminokyseliny. Řešením je v těchto případech měření NMR experimentů v nedeuterovaných rozpouštědlech a potlačování intenzivního signálu rozpouštědla. Ke vzorkům se ale většinou přidává alespoň malá část deuterovaného rozpouštědla (~ 10%), aby bylo možné zajistit stabilitu magnetického pole pomocí locku.

K potlačení signálu rozpouštědla bylo vyvinuto několik různých metod. Nejjednodušší metodou je takzvaná presaturace, při které se v průběhu relaxační prodlevy *d*¹ ozařuje signál rozpouštědla elektromagnetickým zářením se slabým výkonem, které způsobí vyrovnání populací (saturaci) spinových stavů jader ¹H rozpouštědla a tedy potlačení intenzity jeho signálu (obrázek 7.6). Jiné metody využívají NMR relaxaci, například pulzní sekvenci inversion recovery (kapitola 4.1), kde je prodleva mezi 180° a 90° pulzem nastavena tak, že magnetizace rozpouštědla je před 90° pulzem právě nulová a signál rozpouštědla je tedy ve výsledném spektru potlačen.

Obrázek 7.6. Pulzní sekvence pro potlačení signálu rozpouštědla pomocí presaturace.

Moderní metody potlačení signálu rozpouštědla využívají kombinaci gradientových a selektivních pulzů. Tyto metody vycházejí z pulzní sekvence WATERGATE, která byla navržena pro potlačení signálu vody při měření biomolekul (obrázek 7.7). Zajímavostí je, že tato pulzní sekvence byla navržena významným českým spektroskopikem Vladimírem Sklenářem. Na obrázku 7.8 je spektrum sacharózy měřené ve směsi 90% H₂O + 10% D₂O bez potlačení signálu rozpouštědla a s pomocí modifikované metody WATERGATE.

Obrázek 7.7. Pulzní sekvence pro potlačení signálu rozpouštědla kombinující gradientové echo (kapitola 6.xx) a selektivní pulzy. Selektivní pulzy stáčejí pouze vektor magnetizace zvoleného rozpouštědla. Na jádra rozpouštědla je tak uprostřed pulzní sekvence aplikován dohromady 360° pulz a signál rozpouštědla se tak na konci gradientového echa nerefokusuje. Všechna ostatní jádra "pociťují" mezi gradientovými pulzy pouze 180° pulz a na konci gradientového echa se tedy refokusují.

Obrázek 7.8. ¹H NMR spektrum sacharózy měřené ve směsi 90% H₂O + 10% D₂O bez potlačení signálu rozpouštědla (nahoře) a s pomocí modifikované metody WATERGATE (dole).

Ladění rezonančního obvodu

Aby byl rezonanční obvod NMR spektrometru schopen emitovat a přijímat signál, musí být naladěn na příslušnou rezonanční frekvenci. Proces ladění je podobný tomu, jak se dříve ladila rádia na určitou frekvenci (tedy určitou stanici) pomocí proměnných kondenzátorů nebo potenciometrů, a v současnosti může být plně automatizován. Přeladit rezonanční obvod je nutné vždy, pokud měníme izotop, který chceme ozařovat nebo detekovat. Například pokud měříme jádra ¹³C a poté jádra ³¹P, rezonanční obvod musí být mezi měřeními přeladěn. Na rezonanční obvod má vliv i magnetická susceptibilita rozpouštědla v NMR kyvetě, proto je vhodné rezonanční obvod doladit, i pokud měříme tentýž experiment, ale máme vzorek rozpuštěn v jiném rozpouštědle.

Rotace vzorku

Část nehomogenit magnetického pole v rovině *xy* je možné eliminovat rotací kyvety se vzorkem podél osy *z*, protože každé jádro prochází během otočky různými oblastmi magnetického pole. Nehomogenity v rovině *xy* ale při rotaci vzorku vedou ke vzniku rotačních postranních pásů (obrázek 7.9). Rotaci vzorku není vhodné používat při experimentech s gradienty magnetického pole, protože rotace vzorku může přispět ke konvekci, tedy proudění vzorku mezi jednotlivými částmi kyvety, a tím pádem k potlačení refokusace signálu během gradientového echa.

Ladění homogenity magnetického pole (shim)

Jak již bylo řečeno, magnetické pole, ve kterém probíhá NMR experiment, musí být co nejvíce homogenní. Pokud je v různých částech kyvety různá intenzita vnějšího magnetického pole, identická jádra v molekulách nacházejících se v různých částech kyvety mají jinou rezonanční frekvenci. To v praxi nejčastěji vede k tomu, že jsou všechny signály rozšířené a mají nepravidelný tvar (obrázek 7.9). Integrální intenzita (plocha signálu) ale zůstává stejná, takže široké signály jsou nižší a mají tedy horší poměr signálu k šumu. Nedokonalá homogenita magnetického pole tedy vede ke ztrátě rozlišení (široké signály se budou spíše překrývat) i citlivosti.

Nehomogenity magnetického pole se odstraňují pomocí sady několika desítek korekčních cívek, které vytváří dodatečné magnetické pole takovým způsobem, aby výsledné celkové magnetické pole bylo v celém objemu měřeného vzorku co nejvíce homogenní. U moderních spektrometrů lze ladění homogenity provádět automaticky bez zásahu uživatele. Pro ladění homogenity magnetického pole se často v češtině používá přejatý výraz shimování.

Obrázek 7.9. ¹H NMR spektrum chloroformu měřené s A) špatnou homogenitou magnetického pole, B) s dobrou homogenitou magnetického pole a C) s dobrou homogenitou pole podél osy z ale špatnou homogenitou pole v rovině xy. Ve spektru C) jsou vidět rotační postranní pásy vzdálené 20 Hz od centrální linie, protože vzorek se během měření otáčel podél osy z s touto frekvencí.

Teplota

Kolem kyvety v NMR sondě neustále proudí vzduch (případně dusík) o určité teplotě a tím lze vzorek temperovat na předem zvolenou teplotu. Některé sondy umožňují měření NMR spekter v širokém rozsahu teplot, například –150 – +150 °C. Přestože teplota proudícího vzduchu je snímána senzorem v blízkosti vzorku, teplota vzorku v NMR kyvetě se může od naměřené teploty poněkud lišit. Pokud je třeba znát teplotu vzorku s velkou přesností (například při měření reakční kinetiky), musí se tato teplota kalibrovat. Pro nízké teploty se k této kalibraci používá vzorek methanolu, který se změří těsně před nebo po experimentu, u kterého potřebujeme znát přesnou teplotu vzorku. Methanol má v ¹H spektru dva signály (OH a CH₃ signál) a chemické posuny těchto signálů se mění s teplotou (především signály OH vodíků, protože při vyšší teplotě dochází k rozvolnění mezimolekulových vodíkových vazeb). Z rozdílu chemických posunů těchto dvou signálů lze vypočítat přesnou teplotu vzorku methanolu. Pro kalibraci vyšších teplot se používá vzorek ethylenglykolu.

7.3. Parametry NMR experimentu

Výsledek NMR experimentu lze ovlivnit celou řadou parametrů. Některé z nich, jako například výkon a doba trvání devadesátistupňového pulzu, bývají pravidelně kalibrovány administrátorem NMR spektrometru a není třeba je optimalizovat pro rutinní měření. Zde budou probrány pouze parametry, které souvisí s měřeným rozsahem rezonančních frekvencí a s rozlišením signálů ve výsledném spektru.

Rozsah rezonančních frekvencí, které je možné pozorovat v NMR spektru, se nazývá spektrální okno. Většinou se nastavuje tak, že zvolíme střed spektra a velikost spektrálního okna (neboli šířku spektra). Například pro měření ¹H spekter můžeme zvolit střed spektra 7 ppm a velikost spektrálního okna 16 ppm. Tím máme zajištěno, že ve výsledném spektru budeme pozorovat všechny signály v rozsahu od –1 ppm do 15 ppm. Tento výběr spektrálního okna je dostačující pro naprostou většinu organických látek. Pokud ale měřená molekula například obsahuje velmi silnou intramolekulární vodíkovou vazbu, chemický posun vodíku účastnícího se této vazby může být až 20 ppm a jeho signál by ve spektru s výše uvedeným spektrálním oknem nebyl vidět. U některých typů experimentů se může stát, že se signál mimo spektrální okno takzvaně "překlopí" do použitého spektrálního okna a ve spektru pak tento signál pozorujeme, ale jeho chemický posun neodpovídá skutečnému chemickému posunu daného atomu.

Rozsah spektrálního okna v Hz označujeme SW. Pokud budeme měřit ¹H NMR spektrum s šířkou spektra 15 ppm na 500 MHz spektrometru, snadno spočítáme SW = 15 x 500 Hz = 7500 Hz.

FID se zaznamenává digitálně, tedy jako série bodů oddělených určitou časovou prodlevou. Matematicky lze dokázat, že aby bylo možné zaznamenat všechny frekvence daného spektrálního okna, musíme každou sekundu nasnímat alespoň 2 x *SW* bodů. Celkový čas, po který měříme FID, se nazývá akviziční čas (*AT*). Pro počet digitálně snímaných bodů tedy platí *N* = 2 x *SW* x *AT*.

Veličina digitální rozlišení (*DR*) vyjadřuje, jak velký spektrální rozsah připadá na jeden bod ve spektru. Čím je hodnota *DR* nižší, tím je větší hustota spektrálních bodů a tedy lepší rozlišení signálů. *DR* můžeme vypočítat podle vzorce *DR* = 2 x *SW* / *N* a po dosazení vyjde *DR* = 1 / *AT*. Z posledního vzorce plyne, že spektrum je tím lépe rozlišené, čím je delší akviziční čas. Zároveň ale platí, že nemá smysl prodlužovat akviziční čas do doby, kdy už všechny signály zrelaxovaly. Jinými slovy nemá smysl snímat FID, pokud obsahuje pouze šum.

7.4. Zpracování NMR dat

Zpracováním NMR dat rozumíme veškerou manipulaci, kterou provádíme s FIDem, Fourierovu transformaci, úpravu a vizualizaci výsledného spektra.

Jednou z procedur, kterou můžeme provést s FIDem, abychom zlepšili kvalitu výsledného spektra je násobení vážící funkcí neboli apodizace. Jak bylo diskutováno v kapitole 2.4, šířka signálů ve spektru souvisí s rychlostí ubývání FIDu a tedy s relaxačním časem *T*₂. Čím rychleji FID ubývá, tím jsou signály ve spektru širší. Pokud potřebujeme zúžit signály ve spektru, abychom například byli schopni odečíst malé interakční konstanty, můžeme FID vynásobit takovou vážící funkcí, která dá větší váhu konci FIDu a výsledný FID bude tedy pomaleji ubývat (obrázek 7.10). Touto manipulací dosáhneme zúžení signálů ve spektru, zároveň ale dojde ke zhoršení poměru signálu k šumu, protože dáváme větší váhu té části FIDu, kde je více šumu a méně signálu. Takováto manipulace s FIDem se nejčastěji provádí u ¹H NMR experimentů, protože vodíky ¹H jsou velmi citlivé a zhoršení poměru signálu k šumu většinou nepředstavuje problém. Zároveň je informace obsažená v ¹H–¹H interakčních konstant ze spektra.

Uhlíky ¹³C jsou mnohem méně citlivé než vodíky ¹H a proto většinou není žádoucí zužovat jejich signály na úkor poměru signálu k šumu. Na druhou stranu ve spektrech malých a středně velkých organických molekul bývají signály neekvivalentních uhlíků dobře separované singlety (díky širokopásmovému dekaplinku vodíků) a není potřeba je zužovat výše uvedenou manipulací. Naopak bývá výhodné zlepšit poměr signálu k šumu i za cenu rozšíření signálů. Za tímto účelem se ¹³C FID

násobí exponenciální funkcí (obrázek 7.10), která dá větší váhu začátku FIDu obsahujícímu více signálu a méně šumu. Zároveň však výsledný FID rychleji ubývá a signály ve spektru jsou pak rozšířené.

Obrázek 7.10. A) ¹H FID 2-ethoxybenzaledehydu a signál vodíku H4 ve výsledném spektru. B) Stejný FID a signál po aplikaci vážící funkce sloužící k zúžení signálů. C) Stejný FID a signál po aplikaci exponenciální vážící funkce vedoucí ke zlepšení poměru signálu k šumu a rozšíření signálů.

Důležitým parametrem, kterým lze ovlivnit vzhled spektra je počet bodů ve spektru. Počet bodů ve spektru může být nižší, než je počet snímaných bodů FIDu, tím však ztrácíme spektrální rozlišení. Počet bodů může být i vyšší než počet bodů FIDu, tím dochází k optickému zlepšení spektra, protože jednotlivé spektrální body jsou blíže k sobě a výsledné signály pak jsou méně "hranaté". Zvyšování počtu bodů ve spektru se také nazývá doplnění nulami, protože tento proces je analogický tomu, jako bychom naměřený FID prodloužili o další body, jejichž hodnota by byla nula. Výše bylo ukázáno, že digitální rozlišení je tím lepší (menší hodnota *DR*), čím je akviziční čas delší. Doplněním nulami tedy

prodlužujeme FID a tím i zlepšujeme spektrální rozlišení. Je však třeba mít na paměti, že doplněním nulami zlepšujeme pouze vizuální kvalitu spektra (obrázek 7.11). Pokud je počet skutečně naměřených bodů ve FIDu nedostatečný, ve výsledném spektru nemůžeme dosáhnout lepšího rozlišení signálů pouze doplněním nulami.

Obrázek 7.11. Signál vodíku H4 2-nitroanilinu v¹H NMR spektru. Experimentální FID je ve všech případech identický, spektra se liší pouze počtem spektrálních bodů. U každého spektra je uvedený počet bodů celého spektra (ne pouze zobrazeného výřezu), celková šířka spektra je *SW* = 10000 Hz. Počet nasnímaných bodů FIDu je N = 32768.

Před interpretací a případnou prezentací NMR spektra je většinou nutné provést ještě několik dalších procedur, které mohou být do určité míry prováděny automaticky pomocí softwaru určeného ke zpracování NMR dat. Jednou z těchto procedur je korekce fáze spektra. Různé faktory dané vlastnostmi NMR spektrometru a NMR experimentu mohou vést k nesprávné fázi spektra, ve kterém signály nemají očekávaný absorpční tvar (obrázek 7.12.). Dále bývá nutné provést korekci základní linie (baseline correction). Dalším krokem je takzvané referencování, tedy přiřazení určité hodnoty chemického posunu zvolenému standardu (například přiřazení 0 ppm signálu tetramethysilanu). Některá spektra (typicky jednodimenzionální ¹H spektra) můžeme také integrovat, tedy zjistit poměrné zastoupení jednotlivých neekvivalentních atomů ve vzorku. Dále můžeme k signálům přiřadit jejich chemické posuny případně frekvence v jednotkách Hz, aby bylo možné odečíst interakční konstanty.

V odborných časopisech bývá často vyžadováno, aby byla pro každou nově připravenou látku prezentována ¹H a ¹³C NMR spektra jako důkaz identity a čistoty dané látky. Dále také bývá zvykem v experimentální části odborných publikací popsat naměřená NMR spektra, aby bylo možné snadno ověřit strukturu látek při reprodukování syntetických experimentů. Formát popisu NMR spektra je dán zvyklostmi daného odborného časopisu. Níže je uvedena ukázka popisu ¹H a ¹³C NMR spekter ve formátu používaném v časopisech vydávaných American Chemical Society.

2-Nitroanilin. ¹H NMR (DMSO- d_6 , 500.0 MHz): 7.94 (1H, dd, $J_{3,4} = 8.7$, $J_{3,5} = 1.6$, H3), 7.41 (2H, bs, NH₂), 7.37 (1H, ddd, $J_{5,6} = 8.5$, $J_{5,4} = 6.8$, $J_{5,3} = 1.6$, H5), 7.01 (1H, dd, $J_{6,5} = 8.5$, $J_{6,4} = 1.3$, H6), 6.60 (1H, ddd, $J_{4,3} = 8.7$, $J_{4,5} = 6.8$, $J_{4,6} = 1.3$, H4); ¹³C NMR (DMSO- d_6 , 125.7 MHz): 146.4 (C1), 135.9 (C5), 130.5 (C2), 125.6 (C3), 119.4 (C6), 115.7 (C4).

Obrázek 7.12. Ukázka ¹H NMR spektra 4-ethoxybenzaldehydu s nesprávnou fází (nahoře) a správně zfázované spektrum (dole).

8 ¹³C NMR SPEKTROSKOPIE

Spektra jader ¹³C jsou po ¹H experimentech druhá nejčastěji měřená spektra při strukturní analýze organických molekul. Kvůli širokopásmovému dekaplinku, který vede k NOE obohacení některých signálů, a kvůli dlouhým relaxačním časům *T*₁ některých uhlíkových jader není možné běžně měřená uhlíková spektra přesně kvantifikovat (intenzity neodpovídají relativním počtům uhlíků). Nejdůležitější informací, kterou lze z ¹³C spekter získat, jsou tak chemické posuny jednotlivých signálů. Signály uhlíkových atomů v běžných organických sloučeninách nalezneme ve spektru nejčastěji mezi 0–220 ppm. Typické oblasti signálů některých typů uhlíků jsou ukázány na obrázku 8.1 a podrobněji jsou probrány v kapitole 8.1.

Obrázek 8.1. Typické oblasti chemických posunů ve ¹³C spektrech organických molekul.

8.1 Chemické posuny

Alkany a cykloalkany

Chemický posun uhlíku v alkanech závisí na počtu uhlíkových atomů v α a β pozicích ke sledovanému uhlíku a na jejich rozvětvení. Značný vliv na uhlíkové chemické posuny mají neuhlíkové substituenty (tabulka 8.1). Elektronegativní substituenty odčerpávají elektronovou hustotu z okolí uhlíkového jádra, daný uhlík je pak méně stíněn a má tedy vyšší chemický posun. Souvislost chemického posunu s elektronegativitou je dobře vidět například na posunech uhlíků sousedících s fluorem, chlorem a bromem (tabulka 8.1). Jod je výjimkou z efektu elektronegativních substituentů: chemický posun uhlíku přímo navázaného na atom s velkým atomovým číslem je nižší než u nesubstituovaného alkanu. Tomuto jevu se říká efekt těžkého atomu a nejčastěji je pozorovatelný právě u sloučenin obsahujících jod. Například chemický posun uhlíku v molekule Cl₄ je –292 ppm, tedy zcela mimo rozsah běžně měřených uhlíkových spekter. Uhlík v β poloze k elektronegativnímu substituentu je také méně stíněn, a jeho signál je tedy posunut k vyšším hodnotám ppm, ale tento efekt je mnohem slabší než v případě α uhlíků (přímo navázaných na substituent). Signály uhlíků v poloze γ k substituentům jsou naopak mírně posunuty směrem do nižších hodnot chemických posunů, tomuto jevu se říká γ -efekt a je pravděpodobně způsoben sterickými interakcemi.

Х—	- <mark>C^αH₂</mark>	- C^βH ₂	– <mark>C</mark> ^γ H₃
Х	δ(C ^α)	δ(C ^β)	δ(C ^γ)
Н	16,1	16,3	16,1
CH₃	24,9	24,9	13,1
$\rm NH_2$	44,6	27,4	11,5
ОН	64,9	26,9	11,8
NO_2	77,4	21,2	10,8
F	85,2	23,6	9,2
Cl	46,7	26,0	11,5
Br	35,4	26,1	12,7
I	9,0	26,8	15,2

Tabulka 8.1. Chemické posuny (ppm) uhlíků v substituovaném propanu.

Chemické posuny nesubstituovaných cykloalkanů se objevují v rozmezí 22–29 ppm, jedinou výjimkou je cyklopropan, který má uhlíkový chemický posun –2,8 ppm (tabulka 8.2). Neobvykle nízké chemické posuny jsou pozorovány i u dalších tříčlenných cyklických sloučenin, například chemické posuny uhlíků v oxiranu jsou 40 ppm, zatímco chemický posun uhlíku přímo navázaného na kyslík ve vícečlenných kruzích nebo v acyklických sloučeninách bývá vyšší než 50 ppm.

Tabulka 8.2. Chemické posuny (ppm) uhlíků v cykloalkanech.

	δ
Cyklopropan	-2,8
Cyklobutan	22,4
Cyklopentan	25,8
Cyklohexan	27,0
Cykloheptan	28,7

Alkeny

Signály uhlíků účastnících se dvojných vazeb je nejčastěji možné nalézt v širokém rozmezí 100–150 ppm. Pokud jsou na dvojné vazbě pouze alkylové substituenty, rozmezí chemických posunů je užší: 120–140 ppm. Substituenty ovlivňují chemické posuny díky indukčnímu a mezomernímu efektu. Příklady mezomerních efektů jsou ukázány na obrázku 8.2. Elektron-donorní methoxy substituent zvyšuje elektronovou hustotu na uhlíku v β poloze (na tomto uhlíku je parciální záporný náboj), tento uhlík je tedy více stíněn a má nižší chemický posun (84 ppm) než nesubstituovaný ethylen (124 ppm). Naopak elektron-akceptorní karbonylová skupina snižuje elektronovou hustotu na β uhlíku a tento uhlík pak má vyšší chemický posun (137 ppm). U jodethylenu je opět patrný efekt těžkého atomu – uhlík přímo navázaný na jod má neobvykle nízký chemický posun (tabulka 8.3).

×		
	$C^{\alpha}H =$	C ^P H ₂
Х	δ(C ^α)	δ(C ^β)
Н	123,5	123,5
CH₃	133,4	115,9
F	148,2	89,0
Cl	125,9	117,2
Br	115,6	122,1
I	85,2	130,3
OCH₃	153,2	84,1
СНО	139,3	136,8

Tabulka 8.3. Chemické posuny (ppm) uhlíků v substituovaném ethylenu.

Obrázek 8.2. Vliv mezomerního efektu na elektronovou hustotu a chemické posuny (ppm) uhlíků na dvojné vazbě.

Alkyny

Signály uhlíků na trojných vazbách mají většinou nižší chemické posuny než signály uhlíků na dvojných vazbách, nejčastěji je pozorujeme v oblasti 60–90 ppm, ale substituenty mohou díky indukčnímu a mezomernímu efektu polohy signálů značně pozměnit, jak je patrno z tabulky 8.4.

Tabulka 8.4. Chemické posuny (ppm) uhlíků v substituovaném acetylenu.

X — C ^α <u></u> C ^p H			
Х	δ(C ^α)	δ(C ^β)	
Н	71,9	71,9	
CH₃	80,1	67,6	
OCH_2CH_3	89,6	23,4	
СНО	81,8	83,1	

Areny

Signály aromatických uhlíků leží přibližně ve stejném rozsahu jako signály uhlíků na dvojných vazbách, tedy 120–140 ppm pro nesubstituované nebo alkyl-substituované areny a 100–160 ppm pro aromatické sloučeniny s dalšími substituenty (viz tabulka 8.5). Výrazný je opět vliv indukčního a mezomerního efektu na chemické posuny. Elektron-donorní substituenty zvyšují elektronovou hustotu na aromatickém jádru a z možných mezomerních struktur ukázaných na obrázku 8.3 pro

anilin je zřejmé, že elektronová hustota je nejvyšší v polohách *ortho* a *para* k elektron-donornímu substituentu. Proto uhlíky v *ortho* a *para* polohách u těchto derivátů benzenu mívají nižší chemické posuny než nesubstituovaný benzen. Vyšší elektronová hustota se zároveň projeví snadnější elektrofilní substitucí do těchto poloh. Naopak elektron-akceptorní substituenty snižují elektronovou hustotu na aromatickém jádru. Jak je patrné z obrázku 8.3, kde jsou zobrazeny mezomerní struktury pro nitrobenzen, elektronová hustota je nejnižší v polohách *ortho* a *para*. Z tohoto důvodu bývá potlačena elektrofilní substituce do poloh *ortho* a *para* a probíhá tedy přednostně do polohy *meta* k elektron-akceptornímu substituentu. Chemické posuny uhlíků v *ortho* poloze k substituentu mohou být navíc ovlivněny prostorovými interakcemi se substituentem, ale chemické posuny uhlíků v *para* poloze k substituentům korelují velmi dobře s Hammettovými konstantami, které odráží schopnost substituentů zvyšovat nebo snižovat elektronovou hustotu v aromatickém jádru.

Tabulka 8.5. Chemické posuny (ppm) monosubstituovaných benzenů.

X–				
Х	δ(C ^{ipso})	δ(C ^{ortho})	δ(C ^{meta})	δ(C ^{para})
Н	128,5	128,5	128,5	128,5
Li	186,6	143,7	124,7	133,9
NO_2	148,4	123,6	129,4	134,6
NH_2	146,7	115,1	129,3	118,5
OH	155,4	115,7	129,9	121,1

Obrázek 8.3. Vliv mezomerního efektu na elektronovou hustotu uhlíků a chemické posuny v aromatických sloučeninách.

V heteroaromatických sloučeninách je elektronová hustota a tedy i chemické posuny uhlíkových signálů výrazně ovlivněna heteroatomem. Místa se zvýšenou nebo naopak sníženou elektronovou hustotou lze opět určit z možných mezomerních struktur dané heteroaromatické sloučeniny a bývá tedy možné odhadnout, zda daný uhlík bude mít vyšší nebo nižší chemický posun než uhlíky v benzenu. Například jádro pyridinu je elektronově chudé, jeho reaktivita vůči elektrofilní substituci je podobná jako reaktivita nitrobenzenu a elektrofilní substituce probíhá nejčastěji do polohy 3. To
velmi dobře koreluje s uhlíkovými chemickými posuny, které jsou podobné jako v nitrobenzenu kromě uhlíku číslo 2, který je přímo navázaný na heteroatom (viz obrázek 8.4).

Obrázek 8.4. ¹³C chemické posuny pyridinu a nitrobenzenu.

Deriváty karboxylových kyselin

Signály karboxylových uhlíků v karboxylových kyselinách, esterech, amidech, anhydrydech a halogenidech karboxylových kyselin nalezneme nejčastěji v rozmezí 160–180 ppm. Deprotonací karboxylové kyseliny v bazickém prostředí se sníží stínění karboxylového uhlíku a jeho signál se pak objevuje u vyšších chemických posunů (přibližně o 6 ppm). Vynesením závislosti chemických posunů na pH prostředí můžeme snadno identifikovat pK_A sledované kyseliny.

Aldehydy, ketony

Signály karbonylových uhlíků v aldehydech a ketonech bývají v rozmezí 190–220 ppm. Konjugované karbonylové uhlíky jsou více stíněny a mají chemický posun přibližně o 10 ppm nižší.

8.2 Interakční konstanty

Homonukleární skalární interakce mezi jádry ¹³C v uhlíkových spektrech většinou nepozorujeme, protože při nízkém přírodním zastoupení je malá pravděpodobnost (1.1%), že v sousedství jádra ¹³C bude opět jádro ¹³C. V uhlíkových spektrech bychom mohli pozorovat homonukleární interakce jako ¹³C satelity kolem singletových signálů, ale ve ¹³C spektrech bývá většinou kvůli nízké citlivosti jader ¹³C horší poměr signálu a šumu a ¹³C satelity jsou ztraceny v šumu.

Heteronukleární skalární interakce s protony (¹³C,¹H) jsou obvykle eliminovány dekaplinkem a tak spektra obsahují pouze singlety. Jsou přehledná a téměř bez překryvů. Interakce ¹³C–¹H můžeme pozorovat buďto v nedekaplovaných ¹³C spektrech nebo v ¹H spektrech jako ¹³C satelity (kapitola 2.5). Znalost velikosti skalárních ¹³C,¹H interakcí je ale nutná pro správné nastavení některých experimentů, například APT nebo INEPT (kapitola 3.1). Velikost interakce přes jednu vazbu můžeme odhadnout z přibližného vzorce

$$^{1}J_{C-H} = 5 \cdot \% s$$

kde %s je procentuální podíl s charakteru daného uhlíku zjištěný z jeho hybridizace. Příklady jsou uvedeny v tabulce 8.6. Geminální interakce ${}^{2}J_{C-H}$ většinou nabývají hodnot –10 až +30 Hz a vicinální interakce ${}^{3}J_{C,H}$ bývají kladné v rozmezí 0–12 Hz.

	H_3C-CH_3	$H_2C=CH_2$	C_6H_6	HC≡CH
Hybridizace	sp³	sp²	sp²	sp
%s	25	33,3	33,3	50
Vypočtené ¹ J _{C,H}	125	166,5	166,5	250
Experimentální ¹ J _{С,Н}	124,9	156,4	158,4	249,0

Tabulka 8.6. Heteronukleární skalární interakce ${}^{1}J_{C-H}$ v molekulách s různě hybridizovanými uhlíkovými atomy.

9 ¹H NMR SPEKTROSKOPIE

Vodíková spektra jsou nejčastěji měřená NMR spektra, protože vodíky ¹H jsou z hlediska NMR spektroskopie nejcitlivější jádra – jednak mají téměř 100% přírodní izotopové zastoupení a zároveň mají i nejvyšší gyromagnetický poměr ze všech stabilních izotopů. Typický ¹H NMR experiment trvá 2– 5 minut a výsledné spektrum poskytuje velmi cenné informace o struktuře měřeného vzorku. Kromě chemických posunů jednotlivých signálů pozorujeme ve spektrech i štěpení signálů homonukleárními skalárními interakcemi (nejčastěji ²J_{H,H} a ³J_{H,H}) a spektra můžeme i poměrně přesně kvantifikovat, tedy zjistit počet ekvivalentních atomů vodíku poskytujících jednotlivé signály. Nevýhodou vodíkových spekter je poměrně malý rozsah chemických posunů (nejčastěji 0–10 ppm) a z něj plynoucí časté překryvy signálů ve spektru.

9.1 Chemická a magnetická ekvivalence

Pojem chemická ekvivalence je pro chemiky intuitivní; atomy, které mají stejné chemické okolí (dané jednak chemickými vazbami atomu s ostatními atomy v molekule a také konformací molekuly), jsou chemicky ekvivalentní. Jádra těchto atomů mají stejnou strukturu elektronového obalu a jsou elektrony stejně stíněna, tím pádem mají stejnou rezonanční frekvenci (společný signál ve spektru). Z hlediska NMR spektroskopie je však ještě třeba zavést pojem magnetická ekvivalence: magneticky ekvivalentní jsou jádra, která jsou chemicky ekvivalentní a zároveň mají stejnou velikost skalárních interakcí se všemi dalšími magneticky aktivními jádry v molekule. Například vodíková jádra v molekule difluormethanu (obrázek 9.1) mají díky symetrii molekuly stejné chemické okolí a jsou tedy chemicky ekvivalentní; zároveň budou mít obě vodíková jádra (opět díky symetrii molekuly) stejně velkou skalární interakci s oběma jádry fluoru ¹⁹F v molekule. Dvě vodíková jádra v molekule difluormethanu jsou tedy jak chemicky tak magneticky ekvivalentní. V molekule 1,1-difluorethenu jsou obě vodíková jádra také chemicky ekvivalentní, ale skalární interakce vodíku H^A s fluorem F^X bude mít jinou velikost než skalární interakce vodíku H^{A'} s týmž jádrem fluoru F^x. Vodíky H^A a H^{A'} tedy nejsou magneticky ekvivalentní. Magnetická neekvivalence jader H^A a H^{A'} vede ke komplikovanějšímu vzhledu signálu těchto jader ve spektru. Protože jsou tato jádra chemicky ekvivalentní, mají jejich signály stejný chemický posun, ale signál je komplikovanější, obsahuje více linií s nestejnou intenzitou.

Spinový systém difluoromethanu bychom nazvali A₂X₂, spinový systém v 1,1-difluorethenu bychom značili AA'XX'. Toto označení nám říká, že v této molekule jsou dva typy chemicky ekvivalentních jader A a X, ale dvě chemicky ekvivalentní jádra A v molekule nejsou magneticky ekvivalentní, stejně tak dvě chemicky ekvivalentní jádra X nejsou magneticky ekvivalentní.

S magnetickou neekvivalencí se můžeme často setkat u aromatických sloučenin, kde jsou často pozorovatelné skalární interakce přes 4 nebo 5 vazeb. Například u *para*-disubstituovaných derivátů benzenu jsou vodíková jádra v *ortho* poloze k jednomu substituentu chemicky ekvivalentní. Kvůli nestejné velikosti skalární interakce k jednomu dalšímu vybranému vodíku v molekule (v *meta* poloze) ale nejsou tato jádra magneticky ekvivalentní. Tato magnetická neekvivalence vede k pozorování multipletů ve spektru (obrázek 9.2). Signály magneticky neekvivalentních jader mohou svým tvarem připomínat dublet, triplet a podobně, vždy je ale musíme popisovat jako multiplet, protože při bližším pohledu je vidět, že se skládají z více linií. Další příklady molekul s magneticky ekvivalentními a neekvivalentními vodíkovými jádry jsou na obrázku 9.3.

Obrázek 9.2. Aromatická oblast ¹H NMR spektra para-disubstituovaného benzenu obsahující signály magneticky neekvivalentních jader.

Obrázek 9.3. Příklady molekul s magneticky neekvivalentními vodíky. Vodíky označené stejnou barvou ale jiným odstínem jsou chemicky ekvivalentní ale magneticky neekvivalentní. Vodíky označené stejnou barvou i odstínem (v druhém řádku) jsou chemicky i magneticky ekvivalentní.

9.2 Spinový systém, řád spektra

V předchozí kapitole bylo použito označení spinového systému v molekule pomocí písmen, případně písmen s čárkou pro magneticky neekvivalentní jádra (A₂X₂, AA´XX´). Tento způsob označování spinového systému se běžně používá v textech popisujících NMR spektra. Pro signály, které jsou od sebe ve spektru vzdálené, se často používají písmena, která jsou od sebe v abecedě daleko (např. A a X), pro signály, které jsou blízko sebe ve spektru, se používají písmena blízká v abecedě (například A a B).

Spektra spinového systému se skalárními interakcemi mezi jádry nazýváme spektra prvního řádu, pokud je rozdíl jednotlivých rezonančních frekvencí výrazně větší než velikost spin–spinové interakční konstanty (systém AX na obrázku 9.4). Spektra prvního řádu můžeme analyzovat podle pravidel diskutovaných v kapitole 2.5, tedy například interakce s jedním dalším jádrem způsobí štěpení signálu na dublet s poměrem linií 1:1. Pokud je rozdíl rezonančních frekvencí interagujících jader srovnatelný s velikostí interakční konstanty, poměry intenzit linií v multipletech se mění, už neodpovídají poměrům zjištěným z Pascalova trojúhelníku. Intenzita linie, která je ve spektru blíže signálu interagujícího partnera, je vyšší než intenzita linie vzdálenější. Této změně intenzit linií říkáme stříškový efekt; spojíme-li vrcholy jednotlivých linií jednoho signálu, získáme první polovinu "stříšky" a spojením vrcholů linií druhého signálu získáme druhou polovinu "stříšky". Obě části stříšky vždy směřují k sobě, tedy spojením vrcholů linií vždy získáme stříšku a ne tvar připomínající písmeno V. Pokud nejsou intenzity linií v multipletech výrazně odlišné od ideálních poměrů získaných z Pascalova trojúhelníku, spektrum se někdy označuje jako spektrum "pseudo" prvního řádu (spektrum systému AM v obrázku 9.4). Pokud jsou změny linií výrazné, spektrum se označuje jako spektrum vyššího řádu (někdy též spektrum druhého řádu), příkladem je spektrum systému AB na obrázku 9.4.

Obrázek 9.4. Spektrum molekuly obsahující dvě interagující jádra ¹H. Rozdíl rezonančních frekvencí je v systému AX výrazně vyšší než velikost interakční konstanty *J*_{AX}, což vede k pozorování spektra prvního řádu. Ve spektrech AM a AB je rozdíl rezonančních frekvencí srovnatelný s velikostí interakční konstanty a ve spektru pozorujeme stříškový efekt. Pokud je rozdíl rezonančních frekvencí nulový, interakce mezi jádry se ve spektru neprojeví.

9.3 Chiralita

O molekule, která obsahuje nějaký prvek chirality (centrum, osu nebo rovinu chirality), říkáme, že je chirální nebo opticky aktivní (stáčí rovinu polarizovaného světla). Zrcadlový obraz takové molekuly se nazývá enantiomer. V organické chemii se nejčastěji můžeme setkat s centry chirality. Například uhlíkový atom, který nese čtyři různé substituenty, je chirální (neztotožnitelný se svým zrcadlovým obrazem). Konfiguraci chirálních center označujeme R nebo S podle Cahn-Ingold-Prelogových pravidel. Enantiomery mají stejné fyzikální a chemické vlastnosti, pokud neinteragují s nějakým dalším prvkem chirality v prostředí (například s další chirální molekulou nebo polarizovaným světlem). Pokud molekula obsahuje více prvků chirality, například dvě centra chirality, pak enantiomer této molekuly má změněnou konfiguraci na všech prvcích chirality. Pokud je změněna konfigurace na jednom (nebo více ale ne všech) prvku chirality, získáme diastereomer. Diastereomery mají odlišné fyzikální i chemické vlastnosti, tedy i NMR spektra. Běžný způsob měření NMR spekter nezahrnuje žádný prvek chirality a enantiomery jsou tak v NMR spektrech nerozlišitelné. To znamená, že pomocí běžných NMR spekter nelze zjistit optickou čistotu látek. Aby bylo možné enantiomery v NMR spektrech rozlišit, je třeba nějaký prvek chirality dodat a převést tak problém rozlišení enantiomerů na rozlišení diastereomerů. Typickým přístupem je použití chirálních posunových činidel nebo chirálních rozpouštědel. Pokud použijeme jeden enantiomer chirálního rozpouštědla, solvatace chirálního substrátu a mezimolekulové interakce substrát-rozpouštědlo budou jiné pro každý enantiomer substrátu, což povede k jiným NMR signálům pro každý z enantiomerů. Jako chirální rozpouštědlo lze použít například 1-fenyl-2,2,2-trifluorethanol, 1-fenylethanol nebo 1fenylethanamin (obrázek 9.5). Příklad rozlišení enantiomerů pomocí chirálního rozpouštědla je ukázán na obrázku 9.6.

Obrázek 9.5. Struktury nejpoužívanějších chirálních rozpouštědel.

Obrázek 9.6. Část ¹H, ¹³C APT a ¹⁹F{¹H} (¹⁹F experiment s ¹H dekaplinkem) spekter směsi dvou enantiomerů 1-fenyl-2,2,2-trifluorethanolu (*R*:*S* 2:1) v chirálním rozpouštědle *R*-1-fenylethanaminu. Signál ve vodíkovém i uhlíkovém spektru je štěpen na kvartet díky skalární interakci se třemi jádry ¹⁹F.

Na podobném principu jako použití chirálních rozpouštědel je založena i metoda použití chirálních posunových činidel. Chirální posunová činidla jsou látky, které interagují s molekulami substrátu, ale tato interakce se liší pro různé konfigurace substrátu. V roztoku tak vznikají komplexy substrátčinidlo, které obsahují prvek chirality jak v substrátu tak rozpouštědle. Substrát s opačnou konfigurací chirálního centra tak vede ke vzniku diastereomerního komplexu, který má odlišné NMR spektrum. Mezi často používaná chirální posunová činidla patří například 1-anthryl-2,2,2-trifluorethanol (obrázek 9.7). Aby bylo pomocí chirálních posunových činidel možné enantiomery rozlišit, je třeba zajistit dostatečně silnou interakci mezi substrátem a posunovým činidlem. Tuto interakci můžeme podpořit použitím nesolvatujících rozpouštědel (například chloroform), zvýšením koncentrace posunového činidla nebo snížením teploty experimentu. Dříve byla často používána posunová činidla obsahující ionty lanthanoidů, například komplexu europia s fluorovaným diketoderivátem kafru Eu(TFC)₃ nebo Eu(HFC)₃. Tyto látky se ale již používají méně, protože na spektrometrech s vyššími magnetickými poli často vedou ke značnému rozšíření signálů substrátu.

1-anthryl-2,2,2,-trifluorethanol

Obrázek 9.7. Příklady chirálních posunových činidel.

Jiným přístupem k rozlišení dvou enantiomerů v NMR spektrech je derivatizace těchto látek a zavedení dalšího chirálního centra do molekuly a tím pádem převedení enantiomerů na diastereomery, které jsou v NMR spektrech rozlišitelné (obrázek 9.8). Jedním z nejčastěji používaných derivatizačních činidel je 1-trifluormethyl-1-methoxyfenyloctová kyselina (Mosherova kyselina). Derivatizace chirálních alkoholů touto kyselinou (za vzniku diastereomerních esterů) dokonce umožňuje určení absolutní konfigurace chirálního alkoholu podle změn chemických posunů způsobených blízkostí fenylového kruhu.

Obrázek 9.8. Reakce jednoho enantiomeru Mosherovy kyseliny s dvěma enantiomery alkoholu vede ke vzniku dvou diasteremerních esterů.

Chirální prvky v molekule, případně možnost jejich vzniku je důležitá i pro chemickou ekvivalenci atomových jader. Například vodíky H^A a H^B v molekule *cis*-2-methylcyklopentanolu (obrázek 9.9) nejsou chemicky ekvivalentní, protože vodík H^A je *cis* k methylovému i hydroxylovému substituentu, kdežto vodík H^B je *trans*. Vodíky H^A a H^B označujeme jako diastereotopní, a protože nejsou ekvivalentní, každý z nich bude mít svůj signál ve spektru a můžeme i pozorovat geminální interakci ²J mezi nimi. Vodíky v CH₂ skupinách rozdělujeme do tří typů: homotopní, enantiotopní a diastereotopní. Homotopní vodíky jsou z hlediska NMR spektroskopie nerozlišitelné, vždy poskytují jeden společný signál (homotopní jsou například vždy všechny tři vodíky v methylových skupinách). Enantiotopní vodíky jsou rozlišitelné v chirálním prostředí. Například budeme-li měřit NMR spektrum ethanolu v chirálním rozpouštědle nebo za přítomnosti chirálního posunového činidla, můžeme rozlišit dva vodíky v CH₂ skupině tak, že každý z nich bude mít svůj signál ve spektru. Při měření běžných NMR spekter bez přítomnosti chirálních interakcí jsou ale oba vodíky v CH₂ skupině ethanolu ekvivalentní. Pravidla pro určení topicity vodíků CH₂ skupin pokud uvažujeme jako možné prvky chirality pouze centra chirality:

- 1) Nahradíme-li jeden z vodíků nějakým jiným substituentem, nevznikne žádné centrum chirality: Vodíky jsou homotopní, tedy z hlediska NMR spektroskopie nerozlišitelné.
- 2) Nahradíme-li jeden z vodíků jiným substituentem, vznikne jedno nové chirální centrum a žádné jiné centrum chirality v molekule není: vodíky jsou enantiotopní, tedy v běžně měřených NMR spektrech také nerozlišitelné. K jejich rozlišení je třeba použití chirálního rozpouštědla nebo posunového činidla.
- 3) Nahradíme-li jeden z vodíků jiným substituentem, vznikne jedno nové chirální centrum a nějaké další už je v molekule přítomno nebo vznikne více nových chirálních center: vodíky jsou diastereotopní, tedy neekvivalentní, každý má svůj NMR signál a můžeme pozorovat interakci mezi nimi.

Obrázek 9.9. Příklady diastereotopních (červeně), enantiotopních (modře) a homotopních (zeleně) vodíků H^A a H^B.

Příklad vodíkového spektra, kde se projevuje neekvivalence diastereotopních vodíků je na obrázku 9.10. Poněkud komplikovanější případ nastane, pokud při náhradě jednoho z vodíků vznikne více chirálních center zároveň. Příkladem může být dibenzylsulfoxid, jehož vodíkové spektrum je na obrázku 9.11. Příklady dalších molekul s diastereotopními vodíky jsou na obrázku 9.12.

Obrázek 9.10. Část ¹H spektra allyl glycidyl etheru. Vodíky v CH₂ skupinách v poloze 1 a 3 jsou diastereotopní, nejsou tedy ekvivalentní a každý má svůj signál a lze pozorovat i geminální interakci mezi nimi.

Obrázek 9.11. Část ¹H spektra dibenzylsulfoxidu. Vodíky v CH₂ skupině jsou diastereotopní, protože při náhradě jednoho z nich vznikne chirální centrum na uhlíku a na síře (síra má volný elektronový pár jako čtvrtý substituent). Tyto vodíky tedy mají každý svůj signál a je možné pozorovat geminální interakci mezi nimi. Chemické posuny obou vodíků jsou ale blízké, proto na spektrometrech s nízkou rezonanční frekvencí pozorujeme spektrum vyššího řádu a i na 850 MHz spektrometru je jasně patrný stříškový efekt.

Obrázek 9.12. Příklady diastereotopních vodíků H^A a H^B. Vodíky H^A a H^B v 3-methylpentanu jsou diastereotopní, protože při náhradě jednoho z nich vzniknou chirální centra v polohách 2 a 3 pentanového řetězce. Dva vodíky H^A v polohách 2 a 4 jsou enantiotopní. Podobným způsobem lze zdůvodnit, proč methylové skupiny v diisopropylfosfonátech nejsou ekvivalentní. V případě diesteru methylfosfonátu budou ve vodíkovém spektru dva signály diastereotopních methylových skupin CH₃^A a CH₃^B. Ve spektru 2-hydroxypropylfosfonátu budou čtyři signály diastereotopních methylových skupin.

9.4 Stínění jader prostorově blízkými chemickými vazbami nebo funkčními skupinami

Aromatické molekuly obsahují systém delokalizovaných π elektronů, které jsou umístěny nad a pod rovinou aromatického skeletu a mohou se v rámci svých delokalizovaných orbitalů volně pohybovat. Pokud je aromatická molekula umístěna do magnetického pole, její π elektrony se budou pohybovat takovým způsobem, že vytvoří kruhový proud a s ním spojené dodatečné magnetické pole s opačným směrem než má vnější magnetické pole B_0 (obrázek 9.13). Jádra, která budou umístěna v blízkosti této molekuly nad a pod jejím kruhem, pocítí dodatečné stínění tímto kruhovým proudem a jejich chemický posun tak bude nižší než by tato jádra měla bez prostorové interakce s aromatickou molekulou. Naopak jádra, která budou umístěna v rovině aromatického kruhu, budou mít vyšší chemický posun. Tomuto dodatečnému stínění nebo odstínění jader v blízkosti aromatických molekul se říká efekt kruhového proudu.

Obrázek 9.13. Efekt kruhového proudu v blízkosti aromatických molekul.

Obrázek 9.14. Příklady ¹H chemických posunů u molekul, kde se uplatňuje efekt kruhového proudu. Pro srovnání je též uvedena molekula cyklohexadienu, kde kruhový proud nemůže vznikat.

Efekt kruhového proudu lze využít například při studiu interakcí nukleových kyselin s malými molekulami. Planární molekuly se často mohou vmezeřit mezi dva páry bází (dochází k interkalaci). Tyto molekuly se pak ocitají nad a pod rovinou aromatických kruhů bází nukleových kyselin a jejich jádra mají díky kruhovému proudu nižší chemický posun, než pokud by daná molekula byla volně v roztoku nebo interagovala s nukleovými kyselinami jiným způsobem než interkalací.

Dodatečné stínění nebo odstínění jader může být způsobeno i prostorovou blízkostí různých chemických vazeb nebo funkčních skupin. Například jádra, která jsou v ose trojné vazby, jsou stíněna elektrony trojné vazby a mají nižší chemický posun. To je také důvodem, proč vodíky i uhlíky alkynů mívají nižší chemické posuny než vodíky a uhlíky alkenů.

9.5 Vyměnitelné vodíky

Vodíky, které jsou vázané na kyslík, dusík nebo síru, se mohou snadno vyměňovat s dalšími OH, SH nebo NH vodíky přítomnými ve vzorku. V deuterovaných protických rozpouštědlech tak může snadno docházet k výměně těchto vodíků za deuterium. Například alkohol rozpuštěný v D₂O může podléhat reakci:

$$R-OH + D_2O \rightarrow R-OD + HDO$$

Tyto OH, NH a SH vodíky nazýváme vyměnitelné. Pokud měříme ¹H NMR spektra látek s vyměnitelnými vodíky v aprotických rozpouštědlech, k výměně za deuterium nedochází a vyměnitelné vodíky můžeme pozorovat ve spektru. Pokud ovšem k takovému vzorku přikápneme D₂O, MeOD nebo jiné deuterované protické rozpouštědlo, dojde k výměně těchto vodíků za deuterium a jejich signál zmizí z ¹H NMR spektra (obrázek 9.15), protože jádra deuteria ²H mají značně odlišnou NMR rezonanční frekvenci než jádra ¹H. Pokud má vyměnitelný vodík *J*-interakce s dalšími jádry v molekule, výměnou za deuterium dojde k jejich potlačení.

Obrázek 9.15. Část ¹H NMR spektra zobrazené molekuly v roztoku DMSO a po přídavku kapky D₂O. Po přidání D₂O je potlačen signál hydroxylového vodíku a navíc zmizí štěpení signálu sousední CH₂ skupiny. Drobný posun signálu CH₂ skupiny sousedící s kyslíkem v dihydrofuranovém kruhu je způsoben změnou solvatace molekuly po přidání D₂O do roztoku.

V aprotických rozpouštědlech mohou být signály vyměnitelných vodíků štěpeny *J*-interakcemi se sousedními jádry. Pokud ale dochází k rychlé výměně vodíků mezi jednotlivými molekulami substrátu

nebo mezi substrátem a vodou, která je často ve stopovém množství v rozpouštědlech přítomná, *J*interakce může být potlačena. Příklad je na obrázku 9.16, kde jsou ukázána ¹H spektra methanolu měřená v DMSO-*d*₆ při různých teplotách. Při pokojové teplotě pozorujeme signál OH skupiny jako kvartet (kvůli interakci s CH₃ skupinou) a signál CH₃ skupiny jako dublet. Při vyšší teplotě se zvyšuje rychlost intermolekulární výměny OH vodíků a štěpení signálů díky *J*-interakci je potlačeno. Rychlost výměny vodíků může být zvýšena také například přítomností stop kyselin nebo při nízké viskozitě vzorku. Proto například v CDCl₃ nebývá štěpení signálů vyměnitelných vodíků pozorovatelné.

Obrázek 9.16. ¹H NMR spektra methanolu s příměsí vody v DMSO-*d*₆ měřená při různých teplotách.

Vyměnitelné vodíky se často účastní vodíkových vazeb X–H…Y s dalšími elektronegativními atomy ve vzorku. Vytvoření vodíkové vazby vede k prodloužení vazby X–H a tedy k menšímu stínění jader vodíku vazebnými elektrony. Signály těchto vodíků pak mají vyšší chemické posuny, v případě silných vodíkových vazeb mohou být chemické posuny vodíků neobvykle vysoké. Například OH skupina v červeném azobarvivu Sudan-I má signál téměř u 16 ppm (obrázek 9.17).

Pomocí ¹H NMR spekter měřených při různých teplotách můžeme odlišit intra- a inter-molekulární vodíkové vazby. Při vyšších teplotách se molekuly rychleji pohybují a dochází k narušení mezimolekulových vodíkových vazeb. Signály vodíků vázaných v mezimolekulových vodíkových vazbách se tedy se zvyšující teplotou posouvají ve spektru k nižším chemickým posunům. Naproti tomu chemické posuny signálů vodíků vázaných v intramolekulárních vodíkových vazbách bývají méně teplotně závislé (obrázek 9.18). Teplotní závislost chemických posunů vyměnitelných vodíků je také důvodem, proč není vhodné používat například signál vodíku vody jako standard pro referencování ¹H spekter (kapitola 7). Teplotní závislost signálů OH vodíků lze naopak využít pro kalibraci teploty v kyvetě během NMR experimentu (kapitola 7).

Obrázek 9.17. ¹H NMR spektrum azobarviva Sudan-I.

Obrázek 9.18. ¹H NMR dvou různých substituovaných fenolů při teplotě 300 a 330 K. Chemické posuny signálu vody a OH vodíků, které nejsou součástí intramolekulární vodíkové vazby, jsou výrazně více teplotně závislé.

9.6 Vliv magnetického pole, rozpouštědla, koncentrace a teploty na NMR spektra

Velikost magnetického pole NMR spektrometru má vliv na citlivost NMR experimentu a na spektrální rozlišení. Intenzita signálů roste s druhou mocninou intenzity magnetického pole. Citlivost NMR experimentu je tedy například na 600 MHz spektrometru čtyřikrát vyšší než na 300 MHz spektrometru s podobnou NMR sondou.

Na spektrometrech s vyšším magnetickým polem je také vyšší spektrální rozlišení. Je důležité si uvědomit, že chemický posun (vyjádřený v jednotkách ppm) není závislý na velikosti magnetického pole. Stejně tak velikost skalárních interakčních konstant (vyjádřených v Hz) je vlastností molekuly a není závislá na vnějším magnetickém poli. Na spektrometru s vyšším magnetickým polem ale jednotka ppm odpovídá většímu počtu Hz než na spektrometru s nižším polem. Například na 600 MHz spektrometru odpovídá 1 ppm = 600 Hz. Dva dublety, které by od sebe byly vzdáleny 0,1 ppm (=60 Hz) a byly vzájemně štěpeny s interakční konstantou 5 Hz, by byly ve spektru dobře rozlišené, pozorovali bychom spektrum prvního řádu (obrázek 9.4, kapitola 9.2). Na 60 MHz spektrometru by ale 0,1 ppm odpovídalo 6 Hz a signály těchto dubletů by se překrývaly, pozorovaly bychom spektrum vyššího řádu. Příklad vlivu velikosti magnetického pole na rozlišení signálů je ukázán na obrázku 9.19, kde jsou zobrazeny signály diastereotopních vodíků CH₂ skupiny v poloze 4 allyletheru. Chemické posuny obou vodíků jsou blízké, proto na spektrometru s nízkou pracovní frekvencí dochází

k výraznému překryvu signálů a pozorujeme spektrum vyššího řádu. Na spektrometru s vyšší frekvencí můžeme dobře rozlišit dva signály; každý z těchto signálů je štěpen na dublet dubletů tripletů (ddt) díky geminální interakci s druhým vodíkem CH₂ skupiny, vicinální interakci se sousedním vodíkem v poloze 5 a dvěma interakcím přes 4 vazby s vodíky v poloze 6.

Obrázek 9.19. Část ¹H spektra zobrazeného allyletheru se signály dvou neekvivalentních vodíků v poloze 4 změřeného na spektrometrech s různou pracovní frekvencí.

Rozpouštědlo může mít podstatný vliv na NMR spektra, zvláště pokud v některém rozpouštědle pozorovaná látka interaguje (například vodíkovými vazbami nebo π – π interakcemi) s molekulami rozpouštědla. Extrémním případem je voda, která má v deuterovaném benzenu chemický posun 0,4 ppm a v methanolu 4,9 ppm (tabulka 9.1). U C–H vodíků bývá vliv rozpouštědla menší než u vyměnitelných vodíků, ale změna chemického posunu může být v řádu několika desetin ppm. Proto je velmi důležité při popisu NMR spektra zaznamenat rozpouštědlo, ve kterém bylo dané spektrum změřeno.

rubulku 5.1. enemieke posully voull						
Rozpouštědlo	δ(H ₂ O) / ppm					
C_6D_6	0,4					
CDCl₃	1,6					
(CD ₃) ₂ CO	2,8					
(CD ₃) ₂ SO	3,3					
D_2O	4,8					
CD₃OD	4,9					

Tabulka 9.1. Chemické posuny vodíků vody v různých rozpouštědlech.

Koncentrace měřené látky má vliv na intenzitu signálů a tedy i na dobu nezbytnou k naměření daného NMR experimentu. Naopak koncentrace nemívá zásadní vliv na chemické posuny zkoumané látky. Výjimkou jsou případy, kdy při vyšší koncentraci dochází interakcím substrát–substrát, například vznik vodíkově vázaných dimerů karboxylových kyselin.

Teplota významně ovlivňuje NMR spektra, pokud ve vzorku dochází k nějakým dynamickým dějům, například k chemické reakci nebo k pomalé rotaci kolem částečně dvojné vazby. Dynamickými ději v NMR spektroskopii a tedy i vlivem teploty se podrobně zabývá kapitola 10.

9.7 Chemické posuny vodíků

Rozložení spektrálních oblastí, kde se vyskytují ¹H NMR signály jednotlivých typů organických molekul (obrázek 9.20), nápadně připomíná rozložení typických spektrálních oblastí uhlíkových signálů (obrázek 8.1). Vodíkové chemické posuny jsou ale soustředěny v mnohem menším rozsahu, nejčastěji 0–13 ppm.

Obrázek 9.20. Typické oblasti chemických posunů v ¹H spektrech organických molekul.

Alkany a cykloalkany

Chemický posun vodíku v alkanech závisí na substituci sousedního uhlíku (tabulka 9.2). Elektronegativní substituenty odčerpávají elektronovou hustotu z okolí vodíkového jádra, daný vodík je pak méně stíněn a má tedy vyšší chemický posun. Srovnání chlorovaných methanů ukazuje aditivitu vlivu substituentů: chemický posun vodíkových atomů chlormethanu je 3,1, dichlormethanu 5,2 a trichlormethanu 7.3 ppm. Podle očekávání elektronegativní chlor odčerpává indukčním efektem elektrony, odhaluje jádro vodíku a posunuje jeho signál k vyšším hodnotám ppm. Chemický posun nesubstituovaného cyklopropanu je 0,2 ppm, cyklobutanu 1,9 ppm a ostatní nesubstituované cykloalkany mají signál v rozmezí 1,4–1,6 ppm.

X(CH₃										
Х	Li	R₃Si	Н	CH₃	NH_2	OH	NO_2	F	Cl	Br	Ι
δ(Η)	-1,0	0,0	0,4	0,8	2,4	3,3	4,3	4,3	3,1	2,7	2,2

Tabulka 9.2. Chemické posuny (ppm) vodíků v substituovaném methanu.

Alkeny

Signály vodíků na dvojné vazbě lze pozorovat v širokém rozmezí chemických posunů 4–7,5 ppm. Chemické posuny vodíků mohou být ovlivněny indukčním a mezomerním efektem substituentů podobně, jako je to u uhlíkových chemických posunů. Na obrázku 9.21 jsou ukázány chemické posuny dvou substituovaných ethylenů. Chemický posun vodíků v nesubstituovaném ethylenu je 5,3 ppm.

Obrázek 9.21. Chemické posuny vodíků v substituovaných ethylenech.

Alkyny

Signály vodíků na trojné vazbě se objevují v oblasti 2–3 ppm.

Aromatické sloučeniny

Chemické posuny vodíků v aromatických sloučeninách jsou především ovlivněny mezomerním efektem substituentů. Signály vodíků v substituovaných benzenech se vyskytují v oblasti 6,5–8,2 ppm. Vodíky v nesubstituovaném benzenu mají chemický posun 7,3 ppm.

Obrázek 9.22. Chemické posuny vodíků v aromatických sloučeninách jsou ovlivněny mezomerním efektem substituentů.

Aldehydy

Signály aldehydických vodíků jsou ve spektru většinou dobře rozpoznatelné, protože se nacházejí v oblasti 9,5–10,5 ppm, kde se jiné CH vodíky nevyskytují.

Vyměnitelné vodíky

Signály vyměnitelných vodíků v OH, NH a SH skupinách se mohou vyskytovat ve velmi široké spektrální oblasti 1–17 ppm. Chemické posuny jsou ovlivněny kyselým charakterem těchto vodíků. Platí, že kyselejší vodíky jsou méně stíněny elektrony a mají tedy signál u vyšších hodnot ppm. To je dobře vidět například na rozdílu chemických posunů hydroxylového vodíku ve fenolech a v alifatických alkoholech (tabulka 9.3). Chemické posuny vyměnitelných vodíků mohou být také velmi významně ovlivněny tvorbou vodíkových vazeb, koncentrací, teplotou, rozpouštědlem, pH roztoku a přítomností vody nebo dalších látek s vyměnitelnými vodíky. Naměřené chemické posuny vyměnitelných vodíků jsou tedy reprodukovatelné pouze při dodržení identických experimentálních podmínek. Například vliv rozpouštědla na chemické posuny vodíků vody je ukázán v tabulce 9.1.

Vyměnitelný vodík	Funkční skupina	Chemické posuny (ppm)
OH	Alifatické alkoholy	1–5
	Fenoly	4–10
	Karboxylové kyseliny	9–13
	Enoly	10–17
NH	Alifatické aminy	1–5
	Amidy	5–10
SH	Alifatické thioly	1–3
	Thiofenoly	3–4

Tabulka 9.3. Oblasti chemických posunů vyměnitelných vodíků.

9.8 Skalární interakce vodíků

Skalární interakce mezi vodíky jsou ve spektrech pozorovatelné jako štěpení signálů a poskytují mimořádně cenné strukturní informace, protože závisí na geometrii molekuly a na charakteru substituentů. V ¹H NMR spektrech pozorujeme nejčastěji interakce přes dvě (geminální) a přes tři vazby (vicinální interakce). V některých případech je ale možné pozorovat interakce i přes čtyři a více vazeb.

Geminální interakce

Geminální interakce mohou být pozorovány mezi vodíky CH₂ skupiny, pokud tyto vodíky nejsou ekvivalentní (viz kapitola 9.3). Geminální interakce mezi vodíky ¹H mohou nabývat hodnot v rozmezí od –20 do +40 Hz. Z běžných jednodimenzionálních vodíkových spekter ale nemůžeme určit znaménko interakční konstanty a pozorujeme tedy pouze absolutní hodnotu ²J v rozmezí 0–40 Hz. U flexibilních alifatických řetězců pozorujeme geminální interakci kolem –12 Hz. Velikost geminální interakce závisí na vazebném úhlu mezi interagujícími atomy. Se vzrůstajícím vazebným úhlem velikost ²J stoupá. Jelikož je ale hodnota ²J pro většinu látek menší než 0, dochází se vzrůstajícím vazebným úhlem k poklesu její absolutní hodnoty a ve spektrech tedy pozorujeme zmenšení interakcí. Pro vazebný úhel 120°, který je typický pro vodíky na konci dvojné vazby, je geminální interakci, což je vidět například na sérii cyklopropan–aziridin–oxiran (obrázek 9.23) nebo cyklopentan–1,3-dioxolan. Blízkost π elektronů má naopak negativní příspěvek ke geminální interakci (viz cyklopent-4-en-1,3-dion).

Obrázek 9.23. Typické hodnoty geminálních interakčních konstant mezi vodíkovými atomy.

Vicinální interakce

Vicinální interakce mezi vodíky jsou mimořádně důležité pro strukturní analýzu organických látek, zejména pro určování konformace a konfigurace. Velikost vicinální interakční konstanty závisí především na dihedrálním úhlu mezi interagujícími vodíky a na substituentech. Závislost na dihedrálním úhlu je známá jako Karplusova křivka (obrázek 9.24). Vicinální interakce nabývá maximálních hodnot při dihedrálním úhlu 0 a 180°, přičemž maximum u 180° je vyšší. Naopak pro dihedrální úhly blízké 90° je vicinální interakce blízká nule. Díky této závislosti lze například určit polohu substituentů na cyklohexanovém kruhu v židličkové konformaci. Pokud jsou dva vodíky v sousedních polohách v axiální poloze, mají mezi sebou dihedrální úhel 180° a pozorujeme velkou vicinální interakci (10–13 Hz). Naopak pokud jsou jeden nebo oba vodíky v ekvatoriální poloze, mají mezi sebou dihedrální úhel +60° nebo –60° a vicinální interakce je malá (2–4 Hz), viz obrázek 9.25. U volně otáčivých alifatických systémů bývá velikost vicinální interakce v rozmezí 6–8 Hz.

V derivátech benzenu bývá interakce mezi vodíky v *ortho* poloze 7–8 Hz. Přítomnost heteroatomu může velikost vicinální interakce v aromatických látkách výrazně ovlivnit (obrázek 9.25)

Obrázek 9.24. Karplusova křivka závislosti vicinální interakční konstanty na dihedrálním úhlu mezi interagujícími vodíky.

Obrázek 9.25. Typické hodnoty vicinálních interakčních konstant ve vybraných typech látek.

Elektronegativní substituenty snižují velikost vicinální interakční konstanty. U alifatických sloučenin není tento trend tak dramatický jako u nenasycených sloučenin (tabulka 9.4 a 9.5).

X	Li	Н	CH₃	Cl	OH
<i>³J</i> (H,H)	8,4	8,0	7,3	7,2	6,9

Tabulka 9.4. Vicinální interakční konstanta v substituovaných ethanech X–CH₂–CH₃.

Tabulka 9.5. Vicinální interakční konstanta v substituovaných ethylenech.

³ J _{trans} X H	H H				
х	Li	Н	Cl	OCH₃	F
³ J _{cis}	19,3	11,6	7,3	7,1	4,7
³ J _{trans}	23,9	19,1	14,6	15,2	12,8

Interakce přes více vazeb

Interakce mezi vodíky přes více než tři chemické vazby jsou většinou tak malé, že v jednodimenzionálním vodíkovém spektru nejsou pozorovatelné jako štěpení signálů (velikost těchto interakcí je menší než pološířka pozorovaných signálů). Existují však některé strukturní motivy, kde bývají interakce přes čtyři nebo pět vodíkových vazeb větší a tedy v 1D spektrech dobře pozorovatelné. Jsou to především některé bicyklické sloučeniny, struktury s násobnými vazbami mezi interagujícími atomy, aromatické sloučeniny a struktury, kde jsou vazby mezi interagujícími atomy uspořádány podobně jako písmeno W. Příklady strukturních motivů s pozorovatelnými interakcemi přes čtyři a pět vazeb jsou na obrázku 9.26.

Obrázek 9.26. Vybrané strukturní motivy, kde je možné pozorovat nepřímou spin–spinovou interakci mezi vodíkovými jádry přes čtyři vazby (⁴J) a přes pět vazeb (⁵J).

10 DYNAMICKÉ PROCESY

Pokud během NMR experimentu dojde ke změně chemického okolí sledovaných jader, výsledná spektra mohou být významně ovlivněna. Ke změně chemického okolí může docházet během chemických reakcí, kdy se mění konstituce molekul, ale také při změně konformace nebo konfigurace molekul, případně protonace/deprotonace molekul nebo změně tautomeru. Z hlediska vlivu těchto změn na NMR spektra je vhodné rozlišovat nevratné změny (například nevratné chemické reakce) a rovnovážné děje (často nazývané chemická výměna).

10.1 Chemické reakce

Pokud dochází v NMR kyvetě k nevratné chemické reakci, můžeme její průběh sledovat opakovaným měřením NMR spekter. Na začátku reakce pozorujeme ve spektru hlavně signály výchozí látky, intenzita těchto signálů postupně klesá a zvyšuje se intenzita signálů produktů (případně meziproduktů). Nejvhodnější experiment pro sledování průběhu chemických reakcí je vodíkový experiment, protože jádra ¹H jsou nejcitlivější NMR jádra. Pokud nejsou koncentrace složek reakční směsi výrazně nižší než koncentrace, které se běžně používají pro měření NMR spekter, lze vodíkový experiment změřit během několika málo sekund a je tedy možné tento experiment rychle opakovat a sledovat tak průběh i poměrně rychlých reakcí. Běžně měřená vodíková spektra lze kvantifikovat pomocí integrace jednotlivých signálů a z těchto dat je možné získat kinetické parametry probíhající reakce.

Příklad nevratné chemické reakce sledované pomocí ¹H NMR spekter je uveden na obrázku 10.1. Jedná se o izomeraci derivátu Dewarova benzenu. Dewarův benzen (bicyklohexadien) je konstituční izomer benzenu, který má velké vnitřní pnutí kvůli spojení dvou cyklobutenových kruhů. Dewarův benzen může spontánně izomerovat na benzen konrotačním mechanismem. Díky vysoké energetické bariéře této izomerace je však Dewarův benzen za pokojové teploty překvapivě stabilní. Průběh této reakce byl proto sledován při teplotě 145 °C.

Obrázek 10.1. Průběh izomerace Dewarova benzenu na benzen sledovaný pomocí ¹H NMR spekter. Integrace signálů výchozí látky a produktu umožňuje kvantifikovat koncentrace složek reakční směsi. Lineární časová závislost logaritmu koncentrace produktu potvrzuje, že se jedná o reakci prvního řádu a směrnice této závislosti je rychlostní konstanta této reakce.

Jiný příklad nevratné chemické reakce je uveden na obrázku 10.2. Je to rozklad derivátu azacytosinu **A**, ze kterého vzniká nejprve meziprodukt **B**, který dále hydrolyzuje na konečný produkt **C**. Integrace vodíkových spekter opět umožňuje kvantifikovat průběh těchto reakcí a získat rychlostní konstanty obou dějů.

Obrázek 10.2. Průběh rozkladu derivátu azacytosinu A sledovaný pomocí ¹H NMR spekter.

Výhodou měření reakční kinetiky pomocí NMR spektroskopie je, že spektra lze měřit v širokém teplotním rozsahu a ze získané teplotní závislosti rychlostních konstant lze pomocí Eyringovy rovnice určit aktivační entalpii a entropii dané reakce. Pokud sledované molekuly obsahují fluor nebo fosfor, mohou se tato jádra také využít ke sledování průběhu chemických reakcí, protože jádra ¹⁹F a ³¹P jsou velmi citlivá. Navíc v molekulách bývá jen několik málo atomů fluoru nebo fosforu, což většinou vede k přehledným NMR spektrům bez překryvu signálů.

10.2 Chemická výměna

Chemickou výměnou nazýváme rovnovážný děj, ke kterému dochází v průběhu NMR experimentu. Může se jednat o rovnovážnou chemickou reakci nebo o jakýkoli jiný rovnovážný děj, který vede ke změnám chemického okolí sledovaných jader.

Typickým příkladem chemické výměny je bráněná rotace kolem C–N vazby v amidech. V amidech bývá řád této vazby vyšší než 1, což lze vysvětlit pomocí mezomerní formy amidové vazby ukázané na obrázku 10.3. Částečně dvojná vazba mezi uhlíkem a dusíkem vede k vyšší energetické bariéře rotace kolem této vazby. Při nízké teplotě je rotace kolem této vazby pomalá a dvě methylové skupiny na dusíku pozorujeme v NMR spektrech jako neekvivalentní (červená CH₃ skupina je v poloze *cis* ke kyslíku, modrá je v poloze *trans*, mají tedy jiné chemické okolí a nejsou chemicky ekvivalentní). Při vyšší teplotě je rychlost rotace kolem této vazby vyšší, to vede ke zprůměrování stínění obou methylů a obě methylové skupiny se v NMR spektrech projevují jako ekvivalentní – mají jeden společný signál.

Obrázek 10.3. Možné mezomerní struktury amidů.

Jak vypadá NMR spektrum látky s chemickou výměnou, závisí nejen na rychlosti výměnného procesu dané velikostí energetické bariéry a teplotou ale také na rezonanční frekvenci jednotlivých signálů. Příklad takových spekter, která by bylo možné naměřit na 500 MHz spektrometru, je ukázán na obrázku 10.4. Na tomto obrázku jsou ¹H NMR spektra látky, u které dochází k chemické výměně vodíků s chemickými posuny 1,00 a 1,05 ppm. Na 500 MHz spektrometru je tedy rozdíl rezonančních frekvencí těchto signálů 0,05*500 = 25 Hz. Pokud by rychlost chemické výměny byla nulová (například při velmi nízké teplotě), pozorovali bychom dva ostré signály u 1,00 a 1,05 ppm. Při vyšší teplotě, kdy je rychlost výměny vyšší, se oba signály rozšiřují. Při určité rychlosti výměny dojde ke splynutí obou signálů v jeden, což nazýváme koalescence a teplotu, při níž k tomu dojde, nazýváme T_c – teplota koalescence (na obrázku 10.4. přibližně při rychlosti výměny $k = 50 \text{ s}^{-1}$). Dalším zvyšováním rychlosti výměnné reakce (zvyšováním teploty) dochází k zužování nově vzniklého signálu, až při velké rychlosti výměny pozorujeme jeden ostrý signál.

Obrázek 10.4. Simulovaná ¹H NMR spektra látky s chemickou výměnou dvou signálů, které jsou od sebe v režimu pomalé výměny vzdálené 25 Hz. Pracovní frekvence spektrometru je 500 MHz.

Pokud by rychlost výměnné reakce byla stejná, ale rozdíl rezonančních frekvencí by byl jiný než 25 Hz, výsledná spektra by vypadala jinak. Na obrázku 10.5. jsou ukázána spektra látky s chemickou výměnou dvou vodíků, jejichž rozdíl rezonančních frekvencí je 15 Hz. Je vidět, že v tomto případě dochází ke koalescenci dříve – přibližně při rychlosti výměny $k = 40 \text{ s}^{-1}$. Naopak, pokud by rozdíl rezonančních frekvencí byl větší, ke koalescenci by došlo až při vyšší rychlosti výměny (na obrázku 10.6. jsou spektra s rozdílem rezonančních frekvencí 50 Hz). Na tomto obrázku je zároveň vidět, že signály v blízkosti koalescence mohou být velmi široké. To může být problém zejména v uhlíkových spektrech, kde se velmi široké (a tedy nízké) signály mohou snadno ztratit v šumu. To, že ke koalescenci signálů s větším rozdílem rezonančních frekvencí dochází při vyšší rychlosti výměny je zároveň důvodem, proč při měření téže látky na spektrometru s vyšší pracovní frekvencí dochází ke koalescenci při vyšší teplotě než na spektrometru s nižší pracovní frekvencí. Rozdíl rezonančních

frekvencí totiž závisí na pracovní frekvenci spektrometru. Pokud bychom například měřili výměnný proces uvedený na obrázku 10.4. na spektrometru s dvojnásobnou pracovní frekvencí, rozdíl rezonančních frekvencí signálů by byl také dvojnásobný (0,05*1000 = 50 Hz) a ke koalescenci by tedy došlo až při rychlostech výměny vyšších než 100 s⁻¹ (obrázek 10.6.).

V NMR spektrech amidů s různými substituenty na dusíku můžeme tedy v závislosti na rychlosti rotace kolem C–N vazby (a tedy v závislosti na teplotě) pozorovat dvě sady signálů odpovídající dvěma rotamerům kolem C–N vazby nebo široké signály v okolí koalescence (případně absenci některých signálů v uhlíkovém spektru) nebo jednu sadu signálů odpovídající zprůměrovanému stínění jader při rychlé rotaci. Teplotní oblast, ve které pozorujeme široké signály v okolí koalescence, se často nazývá oblast středně rychlé výměny.

V momentě koalescence můžeme z NMR spekter odhadnout rychlost chemické výměny podle vzorce $k_c = 2,22 \Delta v$. V celé teplotní oblasti se středně rychlou výměnou je možné rychlost výměnného procesu zjistit pomocí fitování simulovaných spekter s experimentálními, tomuto fitování se říká kompletní analýza tvaru signálů.

Obrázek 10.5. Simulované ¹H NMR spektrum látky s chemickou výměnou dvou signálů, které jsou od sebe v režimu pomalé výměny vzdálené 15 Hz. Pracovní frekvence spektrometru je 500 MHz.

Obrázek 10.6. Simulované ¹H NMR spektrum látky s chemickou výměnou dvou signálů, které jsou od sebe v režimu pomalé výměny vzdálené 50 Hz. Pracovní frekvence spektrometru je 500 MHz.

Příklad experimentálních spekter s chemickou výměnou je na obrázku 10.7, kde jsou zobrazena spektra uvedeného dithiokarbamátu měřená při různých teplotách. Vazba N–C(S) má, podobně jako v amidech, částečně dvojný charakter. Na obrázku 10.7. vlevo je oblast CH₂ skupin. Při nízké teplotě jsou vidět dva kvartety patřící dvěma neekvivalentním CH₂ skupinám. Štěpení signálů na kvartet je způsobeno interakcí se sousední CH₃ skupinou. Při vyšší teplotě se signály rozšiřují, ale použité rozpouštědlo (CDCl₃) neumožnilo teplotu zvyšovat až do teploty koalescence. Na obrázku 10.7. vpravo jsou signály methylových skupin. Každá z methylových skupin je štěpena na triplet interakcí s CH₂ skupinou. Signály obou methylů mají ale blízké chemické posuny, takže dochází k částečnému překryvu obou signálů. Se zvyšující se teplotou se oba methylové signály rozšiřují, až dojde k jejich koalescenci. Při vysoké teplotě pak pozorujeme jeden ostrý triplet. Analýza tvaru signálů umožňuje určit rychlost rotace kolem C–N vazby při každé teplotě. Vynesením logaritmu *k/T* proti 1/*T* (Eyringova závislost, obrázek 10.8) pak můžeme určit aktivační enthalpii a entropii rotace kolem této vazby.

Obrázek 10.7. ¹H NMR spektra zobrazeného dithiokarbamátu měřená při různých teplotách v CDCl₃.

Obrázek 10.8. Eyringova závislost získaná z rychlostních konstant rotace kolem C–N vazby v zobrazeném dithiokarbamátu.

S chemickou výměnou se můžeme setkat u celé řady procesů nejen u bráněné rotace kolem částečně dvojné vazby. Dalším typickým příkladem je inverze šestičlenného kruhu v židličkové konformaci. Při nízké rychlosti této inverze nejsou vodíkové atomy v axiálních a ekvatoriálních polohách ekvivalentní, mají tedy samostatné signály. Při vyšší rychlosti inverze se pak signály axiálních a ekvatoriálních vodíků sjednotí, takže například v ¹H NMR cyklohexanu měřeného při pokojové teplotě pozorujeme pouze jeden singlet.

Jiným příkladem je inverze konfigurace na dusíku. Pokud jsou na dusíku v aminech tři různé substituenty, dusíkový atom může vystupovat jako centrum chirality, protože formálně čtvrtým substituentem je volný elektronový pár. Na dusíku ale běžně dochází k rychlé změně konfigurace vedoucí ke ztrátě chirality. Vodíky v sousedních CH₂ skupinách pak mohou být buďto diastereotopní nebo enantiotopní v závislosti na rychlosti inverze konfigurace na dusíku. Pomocí NMR spekter s chemickou výměnou lze dále například sledovat tautomerní rovnováhy nebo rovnováhy mezi valenčními izomery.

12 PREDIKCE NMR SPEKTER

Pro usnadnění interpretace NMR spekter je výhodné mít dobrou představu o tom, jak by vypadalo spektrum látky s předpokládanou strukturou. Porovnání tohoto spektra se skutečně naměřeným spektrem potom může pomoci při přiřazení signálů případně může sloužit jako podpůrná argument pro potvrzení nebo vyvrácení navržené struktury. NMR spektra lze predikovat pomocí tří principiálně odlišných přístupů – na základě analogie, pomocí empirických korelací nebo pomocí kvantově chemických výpočtů.

12.1. Analogie

NMR parametry odráží především lokální strukturu (nejbližší okolí) sledovaných jader, proto u větších molekul změny v jedné části molekuly většinou nemívají velký vliv na chemické posuny a další parametry ve vzdálenějších částech molekuly. Toho lze využít při predikci chemických posunů a přiřazování signálů, pokud máme k dispozici přiřazené spektrum podobné molekuly. Jako příklad je na obrázku 12.1 ukázáno, jak lze na základě analogie přiřadit uhlíkové signály nově připraveného triterpenoidu (uprostřed) s využitím známého přiřazení podobných struktur změřených ve stejném rozpouštědle. Z obrázku je vidět, že změna chemické struktury na jednom konci molekuly vede pouze k drobným změnám uhlíkových chemických posunů v opačné části molekuly.

Obrázek 12.1. Přiřazení uhlíkových signálů nově připravené látky (uprostřed) na základě analogie se dvěma látkami se známými uhlíkovými spektry.

Tento přístup samozřejmě nelze využít v případě, kdy změna struktury vede například k rozsáhlejším konformačním změnám, významně jiným interakcím s rozpouštědlem nebo vzniku dimerů či jiných supramolekulárních struktur. Přiřazování signálů na základě analogie může také někdy selhat v případě NMR spekter v pevné fázi, kde krystalové okolí významně ovlivňuje chemické posuny (viz kapitola 13).

12.2. Empirické korelace

Již od počátku rozvoje NMR spektroskopie bylo zřejmé, že chemické posuny jednotlivých atomů nejsou nahodilé, ale odráží strukturu molekuly. S přibývajícím množstvím experimentálních dat pak bylo možné vypozorovat korelace mezi strukturou a chemickými posuny. V polovině 20. století publikoval James Shoolery sérii pravidel pro výpočet ¹H chemických posunů na základě empirických korelací. Příkladem je výpočet chemických posunů vodíků substituovaného methanu podle vzorce

$$\delta_{\rm H} = 0,23 + a^1 + a^2 + a^3,$$

kde a^1-a^3 jsou substituční koeficienty uvedené v tabulce 12.1. Například pro chloroform bychom pomocí tohoto vzorce získali přibližnou hodnotu vodíkového posunu $\delta_H = 0,23 + 3.2,53 = 7,82$. Experimentální hodnota chemického posunu chloroformu se pohybuje v rozmezí 7–8 ppm podle zvoleného rozpouštědla (v aromatických rozpouštědlech je ještě nižší). Podobné empirické vztahy byly navrženy i pro vodíky v dalších typech látek, například vodíky na dvojné vazbě nebo aromatické vodíky.

Substituent R ⁱ	a ⁱ	Substituent R ⁱ	ai
-H	0	–OH	2,56
–CH₃	0,47	$-OC_6H_5$	3,23
–CF₃	1,14	$-NR_2$	1,57
-C=C	1,32	-CO-R	3,13
–C≡C	1,44	–Cl	2,53
$-C_6H_5$	1,83	-Br	2,33
–SR	1,64	-1	1,82

Tabulka 12.1. Substituční koeficienty pro určení přibližného chemického posunu substituovaného methanu.

Pro uhlíkové atomy byly také vypozorovány vztahy mezi strukturou a chemickými posuny. Nejznámější jsou empirická pravidla, která navrhli pánové Grant a Pauli pro alkany. Chemický posun uhlíku se počítá podle vzorce

 $\delta_{\rm C} = -2,3 + 9,1n_{\alpha} + 9,4n_{\beta} - 2,5n_{\gamma} + 0,3n_{\delta} + 0,1n_{\varepsilon} + S + K,$

kde n_{α} – n_{ε} jsou počty uhlíkových atomů v polohách α – ε vůči predikovanému atomu, *S* je sterický korekční faktor zjištěný podle tabulky 12.2 a *K* je konformační korekční faktor. Pro volně otáčivé vazby v alkanech je *K* rovno nule. Například pro 2-methylbutan můžeme určit přibližné chemické posuny uhlíků:

$$\begin{split} &\delta_{C1} = -2,3 + 9,1 \cdot 1 + 9,4 \cdot 2 - 2,5 \cdot 1 + 0,3 \cdot 0 + 0,1 \cdot 0 - 1,1 + 0 = 22,0 \text{ ppm} \\ &\delta_{C2} = -2,3 + 9,1 \cdot 3 + 9,4 \cdot 1 - 2,5 \cdot 0 + 0,3 \cdot 0 + 0,1 \cdot 0 - 3,7 + 0 = 30,7 \text{ ppm} \\ &\delta_{C3} = -2,3 + 9,1 \cdot 2 + 9,4 \cdot 2 - 2,5 \cdot 0 + 0,3 \cdot 0 + 0,1 \cdot 0 - 2,5 + 0 = 32,2 \text{ ppm} \\ &\delta_{C4} = -2,3 + 9,1 \cdot 1 + 9,4 \cdot 1 - 2,5 \cdot 2 + 0,3 \cdot 0 + 0,1 \cdot 0 + 0,0 + 0 = 11,2 \text{ ppm} \\ &\text{Predikované a experimentální hodny uhlíkových chemických posunů 2-methylbutanu jsou ukázány v obrázku 12.2.} \end{split}$$

<u> </u>						
Pozorovaný ¹³ C	Nejvíce r	Nejvíce rozvětvený uhlík v α poloze k pozorovanému atomu				
	CH₃	CH ₂	СН	С		
Methan	0,0	0,0	0,0	0,0		
CH₃–	0,0	0,0	-1,1	-3,4		
CH ₂ -	0,0	0,0	-2,5	-7,5		
CH–	0,0	-3,7	-9,5	-15,0		
C-	-1,5	-8,4	-15,0	-25,0		

Tabulka 12.2. Hodnoty sterických korekčních faktorů používaných při predikci uhlíkových chemických posunů v alkanech.

Obrázek 12.2. Pozorované (černě) a predikované (červeně) uhlíkové chemické posuny v 2methylbutanu.

12.3. NMR prediktory

NMR prediktory jsou softwarové nástroje, které predikují vzhled NMR spekter ze struktury látek. Některé NMR programy predikují NMR spektra pouze na základě výše popsaných (a jim podobných) empirických korelací mezi strukturou a chemickými posuny, případně interakčními konstantami. Tyto predikce jsou poměrně spolehlivé, pokud je studovaná struktura blízká strukturám, pro které byly empirické korelace vytvořeny. Například predikované ¹³C chemické posuny nasycených uhlovodíků se budou velmi pravděpodobně dobře shodovat s experimentálními hodnotami. Pokud má ovšem studovaná struktura méně obvyklé strukturní fragmenty nebo pokud jsou pro výsledné NMR spektrum důležité intramolekulární nebo intermolekulární interakce, NMR prediktory založené na empirických korelacích mohou být velmi nespolehlivé. Například chyba v předpovědi uhlíkových chemických posunů může být až několik desítek ppm.

Sofistikovanější NMR prediktory využívají kromě empirických korelací také interní databázi sloučenin, pro které jsou známy NMR parametry. Při predikci NMR spektra pro určitou strukturu NMR prediktor prohledává tuto databázi a hledá v ní podobné molekuly nebo strukturní fragmenty. Navržené chemické posuny pak většinou vycházejí z kombinace obou přístupů – empirických korelací a analogie. Opět ale platí, že pokud je studovaná struktura nebo její část méně obvyklá, NMR prediktory mohou v předpovědi chemických posunů fatálně selhat.

12. 4. Kvantově chemické výpočty

Pomocí kvantově chemických výpočtů je možné vypočítat NMR parametry pro jakoukoliv strukturu, i v reálném světě neexistující. Není tedy nutné znát žádná experimentální data studované

látky ani látek analogických. Detailní diskuse o kvantově chemických metodách a jejich principech zdaleka přesahuje rozsah této učebnice. Obecně lze říci, že v současné době jsou nejpoužívanější metody pro výpočet NMR parametrů založené na teorii funkcionálu hustoty (density functional theory, DFT). Pomocí kvantově chemických metod lze vypočítat nejen chemické posuny, ale také skalární a kvadrupolární interakční konstanty. V případě potřeby je možné modelovat i dynamické chování molekul a jeho vliv na NMR parametry (například relaxační časy nebo teplotu koalescence). Dále je možné například studovat, jak mezimolekulové interakce ovlivňují NMR spektra.

Vstupem pro výpočet NMR parametrů je kromě klíčových slov označujících zvolenou metodu výpočtu a parametry, které mají být počítány, také molekulová struktura. NMR parametry se tedy počítají na zadané struktuře a mají-li být vypočtené NMR parametry blízko experimentálním hodnotám, vstupní struktura by měla být co nejblíže struktuře látky obsažené v NMR vzorku. Před samotným NMR výpočtem se tedy většinou provádí optimalizace geometrie studované molekuly hledáním molekulové geometrie s nejnižší energií. Optimalizace geometrie může být obtížnější v případě flexibilních molekul nebo molekul s komplikovanější konformační rovnováhou.

Příklad strukturního problému, který lze elegantně vyřešit pomocí kvantově chemických výpočtů je ukázán na obrázku 12.3. Síru v zobrazeném bicyklickém derivátu monosacharidu lze snadno oxidovat na sulfoxid. Touto oxidací ale vzniknou dva diastereomerní sulfoxidy lišící se orientací kyslíku připojeného k síře; síra v těchto sulfoxidech vystupuje jako centrum chirality (jsou k ní připojeny tři rozdílné substituenty a jako čtvrtý substituent figuruje volný elektronový pár). Určit konfiguraci na atomech síry ve vzniklých sulfoxidech je pomocí samotné NMR spektroskopie velmi obtížné – nemůžeme využít žádné nepřímé spin-spinové interakce ani NOE kontakty. Oxidace sulfidu na sulfoxid je ale spojena se značnou změnou chemických posunů sousedních uhlíkových atomů. V obrázku 12.3 jsou ukázány pozorované změny uhlíkových chemických atomů a tytéž změny vypočítané pomocí DFT metodologie. Na základě porovnání experimentálních a vypočtených hodnot lze pak jednoznačně určit konfiguraci jednotlivých sulfoxidů

Obrázek 12.3. Změny uhlíkových chemických posunů vyvolané oxidací sulfidu na sulfoxid. Porovnáním experimentálních hodnot (černě) s vypočtenými (červeně) lze jednoznačně přiřadit strukturu k jednotlivým diastereomerům. Pro zvýšení přehlednosti obrázku nejsou zobrazeny vodíkové atomy.

12. 5 Simulace spekter

Pomocí všech výše zmíněných typů výpočtů můžeme předikovat chemické posuny a případně další NMR parametry pro danou strukturu. Pro simulaci spekter, která by připomínala reálná NMR spektra, to ale nestačí. Do simulací je potřeba zahrnout ještě pološířku signálů způsobenou T_2 relaxací, simulaci tvarů multipletů (například stříškový efekt v AB spinovém systému), vliv dynamických procesů na výsledné spektrum. Ještě komplikovanější je simulace NMR spekter pevných látek, kde je kromě izotropních chemických posunů potřeba brát v úvahu i anizotropii chemických posunů, přímé dipól-dipólové inetarkce, kvadrupolární interakce jader se spinovým kvantovým číslem větším než ½ a také rychlost rotace pod magickým úhlem a orientaci jednotlivých krystalitů v práškovém vzorku. Pro simulaci spekter ze zadaných NMR parametrů lze využít specializované softwarové nástroje.